Azim Surani
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Azim Surani.
Cell | 2015
Walfred W. C. Tang; Sabine Dietmann; Naoko Irie; Henry Gordon Leitch; Vasileios Floros; Charles R. Bradshaw; James Alexander Hackett; Patrick F. Chinnery; Azim Surani
Summary Resetting of the epigenome in human primordial germ cells (hPGCs) is critical for development. We show that the transcriptional program of hPGCs is distinct from that in mice, with co-expression of somatic specifiers and naive pluripotency genes TFCP2L1 and KLF4. This unique gene regulatory network, established by SOX17 and BLIMP1, drives comprehensive germline DNA demethylation by repressing DNA methylation pathways and activating TET-mediated hydroxymethylation. Base-resolution methylome analysis reveals progressive DNA demethylation to basal levels in week 5–7 in vivo hPGCs. Concurrently, hPGCs undergo chromatin reorganization, X reactivation, and imprint erasure. Despite global hypomethylation, evolutionarily young and potentially hazardous retroelements, like SVA, remain methylated. Remarkably, some loci associated with metabolic and neurological disorders are also resistant to DNA demethylation, revealing potential for transgenerational epigenetic inheritance that may have phenotypic consequences. We provide comprehensive insight on early human germline transcriptional network and epigenetic reprogramming that subsequently impacts human development and disease.
Proceedings - Royal Society of London. Biological sciences | 2004
James P. Curley; Sheila C. Barton; Azim Surani; Eric B. Keverne
This study investigates how a targeted mutation of a paternally expressed imprinted gene regulates multiple aspects of foetal and post–natal development including placental size, foetal growth, suckling and post–natal growth, weaning age and puberty onset. This same mutation in a mother impairs maternal reproductive success with reduced maternal care, reduced maternal food intake during pregnancy, and impaired milk let–down, which in turn reduces infant growth and delays weaning and onset of puberty. The significance of these coadaptive traits being synchronized in mother and offspring by the same paternally expressed imprinted gene ensures that offspring that have extracted ‘good’ maternal nurturing will themselves be both well provisioned and genetically predisposed towards ‘good’ mothering.
Nature Methods | 2007
Hiroyuki Matsumura; Masako Tada; Tomomi Otsuji; Kentaro Yasuchika; Norio Nakatsuji; Azim Surani; Takashi Tada
To engineer a stem cell genome, we developed a technology for targeted elimination of chromosomes from mouse embryonic stem (ES)–somatic hybrid cells. Here we demonstrate the use of a universal chromosome elimination cassette (CEC) for elimination of a single embryonic stem cell (ESC)-derived chromosome 11 or 12, and also both copies of chromosome 6, which harbor pluripotency-associated genes including Nanog. We attribute hybrid-cell pluripotency to the expression of Nanog from the reprogrammed somatic-cell nuclei.
Molecular Cell | 2014
Shin Seog Kim; Ufuk Günesdogan; Jan J Zylicz; James Alexander Hackett; Delphine Irene Cougot; Siqin Bao; Caroline Lee; Sabine Dietmann; George E. Allen; Roopsha Sengupta; Azim Surani
Summary Primordial germ cells (PGCs) and preimplantation embryos undergo epigenetic reprogramming, which includes comprehensive DNA demethylation. We found that PRMT5, an arginine methyltransferase, translocates from the cytoplasm to the nucleus during this process. Here we show that conditional loss of PRMT5 in early PGCs causes complete male and female sterility, preceded by the upregulation of LINE1 and IAP transposons as well as activation of a DNA damage response. Similarly, loss of maternal-zygotic PRMT5 also leads to IAP upregulation. PRMT5 is necessary for the repressive H2A/H4R3me2s chromatin modification on LINE1 and IAP transposons in PGCs, directly implicating this modification in transposon silencing during DNA hypomethylation. PRMT5 translocates back to the cytoplasm subsequently, to participate in the previously described PIWI-interacting RNA (piRNA) pathway that promotes transposon silencing via de novo DNA remethylation. Thus, PRMT5 is directly involved in genome defense during preimplantation development and in PGCs at the time of global DNA demethylation.
Cell | 2009
Amy Zarzeczny; Christopher Thomas Scott; Insoo Hyun; Jami Bennett; Jennifer A. Chandler; Sophie Chargé; Heather L. Heine; Rosario Isasi; Kazuto Kato; Robin Lovell-Badge; Kelly M. McNagny; Duanqing Pei; Janet Rossant; Azim Surani; Patrick L. Taylor; Ubaka Ogbogu; Timothy Caulfield
Given the explosion of research on induced pluripotent stem (iPS) cells, it is timely to consider the various ethical, legal, and social issues engaged by this fast-moving field. Here, we review issues associated with the procurement, basic research, and clinical translation of iPS cells.
Differentiation | 2009
Cristina Eguizabal; Tanya C. Shovlin; Gabriela Durcova-Hills; Azim Surani; Anne McLaren
Embryonic stem (ES) cells, derived from pre-implantation embryo, embryonic germ (EG) cells, derived from embryonic precursors of gametes, primordial germ cells (PGCs), can differentiate into any cell type in the body. Moreover, ES cells have the capacity to differentiate into PGCs in vitro. In the present study we have shown the differentiation capacity of six EG cell lines to form PGCs in vitro, in comparison to ES cells. Cell lines were differentiated via embryoid body (EB) formation using the co-expression of mouse vasa homolog (Mvh) and Oct-4 to identify newly formed PGCs in vitro. We found an increase of PGC numbers in almost all analysed cell lines in 5-day-old EBs, thus suggesting that EG and ES cells have similar efficiency to generate PGCs. The addition of retinoic acid confirmed that the cultures had attained a PGC-like identity and continued to proliferate. Furthermore we have shown that the expression pattern of Prmt5 and H3K27me3 in newly formed PGCs is similar to that observed in embryonic day E11.5 PGCs in vivo. By co-culturing EBs with Chinese hamster ovary (CHO) cells some of the PGCs entered into meiosis, as judged by Scp3 expression. The derivation of germ cells from pluripotent stem cells in vitro could provide an invaluable model system to study both the genetic and epigenetic programming of germ cell development in vivo.
eLife | 2015
Jan J Zylicz; Sabine Dietmann; Ufuk Günesdogan; James Alexander Hackett; Delphine Irene Cougot; Caroline Lee; Azim Surani
Early mouse development is accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2), which is essential for embryonic development. Here we show that genome-wide accumulation of H3K9me2 is crucial for postimplantation development, and coincides with redistribution of enhancer of zeste homolog 2 (EZH2)-dependent histone H3 lysine 27 trimethylation (H3K27me3). Loss of G9a or EZH2 results in upregulation of distinct gene sets involved in cell cycle regulation, germline development and embryogenesis. Notably, the H3K9me2 modification extends to active enhancer elements where it promotes developmentally-linked gene silencing and directly marks promoters and gene bodies. This epigenetic mechanism is important for priming gene regulatory networks for critical cell fate decisions in rapidly proliferating postimplantation epiblast cells. DOI: http://dx.doi.org/10.7554/eLife.09571.001
Molecular BioSystems | 2012
Jamie Trott; Katsuhiko Hayashi; Azim Surani; M. Madan Babu; Alfonso Martinez-Arias
Analysis of transcription at the level of single cells in prokaryotes and eukaryotes has revealed the existence of heterogeneities in the expression of individual genes within genetically homogeneous populations. This variation is an emerging hallmark of populations of Embryonic Stem (ES) cells and has been ascribed to the stochasticity associated with the biochemical events that mediate gene expression. It has been suggested that these heterogeneities play a role in the maintenance of pluripotency. However, for the most part, studies have focused on individual genes in large cell populations. Here we use an existing dataset on the expression of eight genes involved in pluripotency in eighty-three ES cells to create Gene Regulatory Networks (GRNs) at the single cell level. We observe widespread heterogeneities in the expression of the eight genes, but analysis of correlations within individual cells reveals three distinct classes centered on the expression of Nanog, a marker of pluripotency, and Fgf5, a gene associated with differentiation: high levels of Nanog and low levels of Fgf5, low levels of Nanog and high levels of Fgf5, and low levels of both. Each of these classes is associated with a collection of active sub-networks, with differing degrees of connectivity between their elements, which define a cellular state: self-renewal, primed for differentiation or transition between the two. Though every cell should be governed by the same network, the active sub-networks may emerge due to considerations such as variation in (i) the expression level of active transcription factors (e.g. through post-translational modification or ligand/co-factor availability) or (ii) access to the target gene locus (e.g. via changes in chromatin status or epigenetic modifications). We conclude that heterogeneities in gene expression should not be interpreted as representing different states of a single unique network, but as a reflection of the activity of different sub-networks in sub-populations of cells.
Current protocols in stem cell biology | 2008
Gabriela Durcova-Hills; Azim Surani
In this unit we describe the derivation of pluripotent embryonic germ (EG) cells from mouse primordial germ cells (PGCs) isolated from both 8.5- and 11.5-days post-coitum (dpc) embryos. Once EG cells are derived we explain how to propagate and characterize the cell lines. We introduce readers to PGCs and explain differences between PGCs and their in vitro derivatives EG cells. Finally, we also compare mouse EG cells with ES cells. This unit will be of great interest to anyone interested in PGCs or studying the behavior of cultured PGCs or the derivation of new EG cell lines.
Mammalian Genome | 2004
Irene Y. Y. Szeto; Sheila C. Barton; Eric B. Keverne; Azim Surani
Peg3 is an imprinted gene exclusively expressed from the paternal allele. It encodes a C2H2 type zinc-finger protein and is involved in maternal behavior. It is important for TNF-NFkB signaling and p53-mediated apoptosis. To investigate the imprinting mechanism and gene expression of Peg3 and its neighboring gene(s), we used a 120 kb Peg3-containing BAC clone to generate transgenic mice. The BAC clone contains 20 kb of 5′ and 80 kb of 3′ flanking DNA, and we obtained three transgenic lines. In one of the lines harboring one copy of the transgene, Peg3 was imprinted properly. In the other two lines, Peg3 was expressed upon both maternal and paternal transmission. Imprinted expression was linked to the differential methylation of a region (DMR) upstream of the Peg3 gene. A second, maternally expressed gene, Zim1, present on the transgene was expressed irrespective of parental inheritance in all lines. These data suggest that, similar to other imprinted genes within domains, Peg3 and Zim1 are regulated by one or more elements lying at a distance from the genes. The imprinting of Peg3 seen in one line may reflect the presence of a responder sequence. Concerning the expression of the Peg3 transgene, we detected appropriate expression in the adult brain. However, this was not sufficient to rescue the maternal behavior phenotype seen in Peg3 deficient animals.