Aziz Bousfiha
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aziz Bousfiha.
Frontiers in Immunology | 2014
Waleed Al-Herz; Aziz Bousfiha; Jean-Laurent Casanova; Helen Chapel; Mary Ellen Conley; Charlotte Cunningham-Rundles; Amos Etzioni; Alain Fischer; José Luis Franco; Raif S. Geha; Lennart Hammarström; Shigeaki Nonoyama; Luigi D. Notarangelo; Hans D. Ochs; Jennifer M. Puck; Chaim M. Roifman; Reinhard Seger; Mimi L.K. Tang
We report the updated classification of primary immunodeficiencies (PIDs) compiled by the Expert Committee of the International Union of Immunological Societies. In comparison to the previous version, more than 30 new gene defects are reported in this updated version. In addition, we have added a table of acquired defects that are phenocopies of PIDs. For each disorder, the key clinical and laboratory features are provided. This classification is the most up-to-date catalog of all known PIDs and acts as a current reference of the knowledge of these conditions and is an important aid for the molecular diagnosis of patients with these rare diseases.
Journal of Clinical Immunology | 2015
Capucine Picard; Waleed Al-Herz; Aziz Bousfiha; Jean-Laurent Casanova; Talal A. Chatila; Mary Ellen Conley; Charlotte Cunningham-Rundles; Amos Etzioni; Steven M. Holland; Christoph Klein; Shigeaki Nonoyama; Hans D. Ochs; Eric Oksenhendler; Jennifer M. Puck; Kathleen E. Sullivan; Mimi L.K. Tang; José Luis Franco; H. Bobby Gaspar
We report the updated classification of primary immunodeficiencies compiled by the Primary Immunodeficiency Expert Committee (PID EC) of the International Union of Immunological Societies (IUIS). In the two years since the previous version, 34 new gene defects are reported in this updated version. For each disorder, the key clinical and laboratory features are provided. In this new version we continue to see the increasing overlap between immunodeficiency, as manifested by infection and/or malignancy, and immune dysregulation, as manifested by auto-inflammation, auto-immunity, and/or allergy. There is also an increased number of genetic defects that lead to susceptibility to specific organisms which reflects the finely tuned nature of immune defense systems. This classification is the most up to date catalogue of all known and published primary immunodeficiencies and acts as a current reference of the knowledge of these conditions and is an important aid for the genetic and molecular diagnosis of patients with these rare diseases.
Frontiers in Immunology | 2011
Waleed Al-Herz; Aziz Bousfiha; Jean-Laurent Casanova; Helen Chapel; Mary Ellen Conley; Charlotte Cunningham-Rundles; Amos Etzioni; Alain Fischer; José Luis Franco; Raif S. Geha; Lennart Hammarström; Shigeaki Nonoyama; Luigi D. Notarangelo; Hans D. Ochs; Jennifer M. Puck; Chaim M. Roifman; Reinhard Seger; Mimi L.K. Tang
We report the updated classification of primary immunodeficiency diseases, compiled by the ad hoc Expert Committee of the International Union of Immunological Societies. As compared to the previous edition, more than 15 novel disease entities have been added in the updated version. For each disorders, the key clinical and laboratory features are provided. This updated classification is meant to help in the diagnostic approach to patients with these diseases.
Blood | 2016
Julie Toubiana; Satoshi Okada; Julia Hiller; Matías Oleastro; Macarena Lagos Gomez; Juan Carlos Aldave Becerra; Marie Ouachée-Chardin; Fanny Fouyssac; Katta M. Girisha; Amos Etzioni; Joris M. van Montfrans; Yildiz Camcioglu; Leigh Ann Kerns; Bernd H. Belohradsky; Stéphane Blanche; Aziz Bousfiha; Carlos Rodríguez-Gallego; Isabelle Meyts; Kai Kisand; Janine Reichenbach; Ellen D. Renner; Sergio D. Rosenzweig; Bodo Grimbacher; Frank L. van de Veerdonk; Claudia Traidl-Hoffmann; Capucine Picard; László Maródi; Tomohiro Morio; Masao Kobayashi; Desa Lilic
Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274 patients from 167 kindreds originating from 40 countries from 5 continents. Demographic data, clinical features, immunological parameters, treatment, and outcome were recorded. The median age of the 274 patients was 22 years (range, 1-71 years); 98% of them had CMC, with a median age at onset of 1 year (range, 0-24 years). Patients often displayed bacterial (74%) infections, mostly because of Staphylococcus aureus (36%), including the respiratory tract and the skin in 47% and 28% of patients, respectively, and viral (38%) infections, mostly because of Herpesviridae (83%) and affecting the skin in 32% of patients. Invasive fungal infections (10%), mostly caused by Candida spp. (29%), and mycobacterial disease (6%) caused by Mycobacterium tuberculosis, environmental mycobacteria, or Bacille Calmette-Guérin vaccines were less common. Many patients had autoimmune manifestations (37%), including hypothyroidism (22%), type 1 diabetes (4%), blood cytopenia (4%), and systemic lupus erythematosus (2%). Invasive infections (25%), cerebral aneurysms (6%), and cancers (6%) were the strongest predictors of poor outcome. CMC persisted in 39% of the 202 patients receiving prolonged antifungal treatment. Circulating interleukin-17A-producing T-cell count was low for most (82%) but not all of the patients tested. STAT1 GOF mutations underlie AD CMC, as well as an unexpectedly wide range of other clinical features, including not only a variety of infectious and autoimmune diseases, but also cerebral aneurysms and carcinomas that confer a poor prognosis.
PLOS ONE | 2011
Stéphanie Boisson-Dupuis; Jamila El Baghdadi; Nima Parvaneh; Aziz Bousfiha; Jacinta Bustamante; Jacqueline Feinberg; Arina Samarina; Audrey V. Grant; Lucile Jannière; Naima El Hafidi; Amal Hassani; Daniel K. Nolan; J. Najib; Yildiz Camcioglu; Nevin Hatipoglu; Cigdem Aydogmus; Gonul Tanir; Caner Aytekin; Melike Keser; Ayper Somer; Guside Aksu; Necil Kutukculer; Davood Mansouri; Alireza Mahdaviani; Setareh Mamishi; Alexandre Alcaïs; Laurent Abel; Jean-Laurent Casanova
Background and Objectives In the last decade, autosomal recessive IL-12Rβ1 deficiency has been diagnosed in four children with severe tuberculosis from three unrelated families from Morocco, Spain, and Turkey, providing proof-of-principle that tuberculosis in otherwise healthy children may result from single-gene inborn errors of immunity. We aimed to estimate the fraction of children developing severe tuberculosis due to IL-12Rβ1 deficiency in areas endemic for tuberculosis and where parental consanguinity is common. Methods and Principal Findings We searched for IL12RB1 mutations in a series of 50 children from Iran, Morocco, and Turkey. All children had established severe pulmonary and/or disseminated tuberculosis requiring hospitalization and were otherwise normally resistant to weakly virulent BCG vaccines and environmental mycobacteria. In one child from Iran and another from Morocco, homozygosity for loss-of-function IL12RB1 alleles was documented, resulting in complete IL-12Rβ1 deficiency. Despite the small sample studied, our findings suggest that IL-12Rβ1 deficiency is not a very rare cause of pediatric tuberculosis in these countries, where it should be considered in selected children with severe disease. Significance This finding may have important medical implications, as recombinant IFN-γ is an effective treatment for mycobacterial infections in IL-12Rβ1-deficient patients. It also provides additional support for the view that severe tuberculosis in childhood may result from a collection of single-gene inborn errors of immunity.
Journal of Experimental Medicine | 2015
Alexandra Y. Kreins; Michael J. Ciancanelli; Satoshi Okada; Xiao Fei Kong; Noé Ramírez-Alejo; Sara Sebnem Kilic; Jamila El Baghdadi; Shigeaki Nonoyama; Seyed Alireza Mahdaviani; Fatima Ailal; Aziz Bousfiha; Davood Mansouri; Elma Nievas; Cindy S. Ma; Geetha Rao; Andrea Bernasconi; Hye Sun Kuehn; Julie E. Niemela; Jennifer Stoddard; Paul Deveau; Aurélie Cobat; Safa El Azbaoui; Ayoub Sabri; Che Kang Lim; Mikael Sundin; Danielle T. Avery; Rabih Halwani; Audrey V. Grant; Bertrand Boisson; Dusan Bogunovic
Kreins et al. report the identification and immunological characterization of a group of TYK2-deficient patients.
Immunological Reviews | 2015
Stéphanie Boisson-Dupuis; Jacinta Bustamante; Jamila El-Baghdadi; Yildiz Camcioglu; Nima Parvaneh; Safaa El Azbaoui; Aomar Agader; Amal Hassani; Naima El Hafidi; Nidal Alaoui Mrani; Z. Jouhadi; Fatima Ailal; J. Najib; Ismail Reisli; Adil Zamani; Sebnem Yosunkaya; Saniye Gulle-Girit; Alisan Yildiran; Funda Erol Cipe; Selda Hancerli Torun; Ayse Metin; Basak Yildiz Atikan; Nevin Hatipoglu; Cigdem Aydogmus; Sara Sebnem Kilic; Figen Dogu; Neslihan Edeer Karaca; Guzide Aksu; Necil Kutukculer; Melike Keser-Emiroglu
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb) and a few related mycobacteria, is a devastating disease, killing more than a million individuals per year worldwide. However, its pathogenesis remains largely elusive, as only a small proportion of infected individuals develop clinical disease either during primary infection or during reactivation from latency or secondary infection. Subacute, hematogenous, and extrapulmonary disease tends to be more frequent in infants, children, and teenagers than in adults. Life‐threatening primary TB of childhood can result from known acquired or inherited immunodeficiencies, although the vast majority of cases remain unexplained. We review here the conditions conferring a predisposition to childhood clinical diseases caused by mycobacteria, including not only M.tb but also weakly virulent mycobacteria, such as BCG vaccines and environmental mycobacteria. Infections with weakly virulent mycobacteria are much rarer than TB, but the inherited and acquired immunodeficiencies underlying these infections are much better known. Their study has also provided genetic and immunological insights into childhood TB, as illustrated by the discovery of single‐gene inborn errors of IFN‐γ immunity underlying severe cases of TB. Novel findings are expected from ongoing and future human genetic studies of childhood TB in countries that combine a high proportion of consanguineous marriages, a high incidence of TB, and an excellent clinical care, such as Iran, Morocco, and Turkey.
The Journal of Allergy and Clinical Immunology | 2015
Cindy S. Ma; Natalie Wong; Geetha Rao; Danielle T. Avery; James Torpy; Thomas Hambridge; Jacinta Bustamante; Satoshi Okada; Jennifer Stoddard; Elissa K. Deenick; Simon J. Pelham; Kathryn Payne; Stéphanie Boisson-Dupuis; Anne Puel; Masao Kobayashi; Peter D. Arkwright; Sara Sebnem Kilic; Jamila El Baghdadi; Shigeaki Nonoyama; Yoshiyuki Minegishi; Seyed Alireza Mahdaviani; Davood Mansouri; Aziz Bousfiha; Annaliesse K. Blincoe; Martyn A. French; Peter Hsu; Dianne E. Campbell; Michael Stormon; Melanie Wong; Stephen Adelstein
BACKGROUND Follicular helper T (TFH) cells underpin T cell-dependent humoral immunity and the success of most vaccines. TFH cells also contribute to human immune disorders, such as autoimmunity, immunodeficiency, and malignancy. Understanding the molecular requirements for the generation and function of TFH cells will provide strategies for targeting these cells to modulate their behavior in the setting of these immunologic abnormalities. OBJECTIVE We sought to determine the signaling pathways and cellular interactions required for the development and function of TFH cells in human subjects. METHODS Human primary immunodeficiencies (PIDs) resulting from monogenic mutations provide a unique opportunity to assess the requirement for particular molecules in regulating human lymphocyte function. Circulating follicular helper T (cTFH) cell subsets, memory B cells, and serum immunoglobulin levels were quantified and functionally assessed in healthy control subjects, as well as in patients with PIDs resulting from mutations in STAT3, STAT1, TYK2, IL21, IL21R, IL10R, IFNGR1/2, IL12RB1, CD40LG, NEMO, ICOS, or BTK. RESULTS Loss-of-function (LOF) mutations in STAT3, IL10R, CD40LG, NEMO, ICOS, or BTK reduced cTFH cell frequencies. STAT3 and IL21/R LOF and STAT1 gain-of-function mutations skewed cTFH cell differentiation toward a phenotype characterized by overexpression of IFN-γ and programmed death 1. IFN-γ inhibited cTFH cell function in vitro and in vivo, as corroborated by hypergammaglobulinemia in patients with IFNGR1/2, STAT1, and IL12RB1 LOF mutations. CONCLUSION Specific mutations affect the quantity and quality of cTFH cells, highlighting the need to assess TFH cells in patients by using multiple criteria, including phenotype and function. Furthermore, IFN-γ functions in vivo to restrain TFH cell-induced B-cell differentiation. These findings shed new light on TFH cell biology and the integrated signaling pathways required for their generation, maintenance, and effector function and explain the compromised humoral immunity seen in patients with some PIDs.
Clinical Immunology | 2010
Aziz Bousfiha; Capucine Picard; Stéphanie Boisson-Dupuis; Shen-Ying Zhang; Jacinta Bustamante; Anne Puel; Emmanuelle Jouanguy; Fatima Ailal; Jamila El-Baghdadi; Laurent Abel; Jean-Laurent Casanova
The vast majority of primary immunodeficiencies (PIDs) predispose affected individuals to recurrent or chronic infectious diseases, because they affect protective immunity to both primary and secondary or latent infections. We discuss here three recently described groups of PIDs that seem to impair immunity to primary infections without compromising immunity to secondary and latent infections. Patients with mutations in IL12B or IL12RB1 typically present mycobacterial disease in childhood with a favorable progression thereafter. Cross-protection between mycobacterial infections has even been observed. Patients with mutations in IRAK4 or MYD88 suffer from pyogenic bacterial diseases, including invasive pneumococcal diseases in particular. These diseases often recur, although not always with the same serotype, but the frequency of these recurrences tails off, with no further infections observed from adolescence onwards. Finally, mutations in UNC93B1 and TLR3 are associated with childhood herpes simplex encephalitis, which strikes only once in most patients, with almost no recorded cases of more than two bouts of this disease. Unlike infections in patients with other PIDs, the clinical course of which typically deteriorates with age even if appropriate treatment is given, the prognosis of patients with these three newly described PIDs tends to improve spontaneously with age, provided, of course, that the initial infection is properly managed. In other words, although life-threatening in early childhood, these new PIDs are associated with a favorable outcome in adulthood. They provide proof-of-principle that infectious diseases of childhood striking only once may result from single-gene inborn errors of immunity.
Journal of Clinical Immunology | 2018
Capucine Picard; H. Bobby Gaspar; Waleed Al-Herz; Aziz Bousfiha; Jean-Laurent Casanova; Talal A. Chatila; Yanick J. Crow; Charlotte Cunningham-Rundles; Amos Etzioni; José Luis Franco; Steven M. Holland; Christoph Klein; Tomohiro Morio; Hans D. Ochs; Eric Oksenhendler; Jennifer M. Puck; Mimi L.K. Tang; Stuart G. Tangye; Troy R. Torgerson; Kathleen E. Sullivan
Beginning in 1970, a committee was constituted under the auspices of the World Health Organization (WHO) to catalog primary immunodeficiencies. Twenty years later, the International Union of Immunological Societies (IUIS) took the remit of this committee. The current report details the categorization and listing of 354 (as of February 2017) inborn errors of immunity. The growth and increasing complexity of the field have been impressive, encompassing an increasing variety of conditions, and the classification described here will serve as a critical reference for immunologists and researchers worldwide.