Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Azmi Mohamed is active.

Publication


Featured researches published by Azmi Mohamed.


Langmuir | 2010

Universal Surfactant for Water, Oils, and CO2

Azmi Mohamed; Kieran Trickett; Swee Yee Chin; Stephen Cummings; Masanobu Sagisaka; Laura Hudson; Sandrine Nave; Robert Dyer; Sarah E. Rogers; Richard K. Heenan; Julian Eastoe

A trichain anionic surfactant sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulfonate (TC14) is shown to aggregate in three different types of solvent: water, heptane, and liquid CO(2). Small-angle neutron scattering (SANS) has been used to characterize the surfactant aggregates in water, heptane, and dense CO(2). Surface tension measurements, and analyses, show that the addition of a third branched chain to the surfactant structural template is critical for sufficiently lowering the surface energy, tipping the balance between a CO(2)-incompatible surfactant (AOT) and CO(2)-philic compounds that will aggregate to form micelles in dense CO(2) (TC14). These results highlight TC14 as one of the most adaptable and useful surfactants discovered to date, being compatible with a wide range of solvent types from high dielectric polar solvent water to alkanes with low dielectrics and even being active in the uncooperative and challenging solvent environment of liquid CO(2).


Journal of Colloid and Interface Science | 2015

Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups

Azmi Mohamed; Argo Khoirul Anas; Suriani Abu Bakar; Tretya Ardyani; Wan Manshol bin W. Zin; Sofian Ibrahim; Masanobu Sagisaka; Paul Brown; Julian Eastoe

Here is presented a systematic study of the dispersibility of multiwall carbon nanotubes (MWCNTs) in natural rubber latex (NR-latex) assisted by a series of single-, double-, and triple-sulfosuccinate anionic surfactants containing phenyl ring moieties. Optical polarising microscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy have been performed to obtain the dispersion-level profiles of the MWCNTs in the nanocomposites. Interestingly, a triple-chain, phenyl-containing surfactant, namely sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3-phenylpropoxy)carbonyl) pentane-2-sulfonate (TCPh), has a greater capacity the stabilisation of MWCNTs than a commercially available single-chain sodium dodecylbenzenesulfonate (SDBS) surfactant. TCPh provides significant enhancements in the electrical conductivity of nanocomposites, up to ∼10(-2) S cm(-1), as measured by a four-point probe instrument. These results have allowed compilation of a road map for the design of surfactant architectures capable of providing the homogeneous dispersion of MWCNTs required for the next generation of polymer-carbon-nanotube materials, specifically those used in aerospace technology.


Langmuir | 2011

Super-Efficient Surfactant for Stabilizing Water-in-Carbon Dioxide Microemulsions

Masanobu Sagisaka; Shuho Iwama; Satoshi Hasegawa; Atsushi Yoshizawa; Azmi Mohamed; Stephen Cummings; Sarah E. Rogers; Richard K. Heenan; Julian Eastoe

The fluorinated double-tailed glutarate anionic surfactant, sodium 1,5-bis[(1H,1H,2H,2H-perfluorodecyl)oxy]-1,5-dioxopentane-2-sulfonate (8FG(EO)(2)), was found to stabilize water-in-supercritical CO(2) microemulsions with high water-to-surfactant molar ratios (W(0)). Studies were carried out here to obtain detailed information on the phase stability and nanostructure of the microemulsions by using a high-pressure UV-vis dye probe and small-angle neutron scattering (SANS) measurements. The UV-vis spectra, with methyl orange as a reporter dye, indicated a maximum attainable W(0) of 60 at 45 and 75 °C, and SANS profiles indicated regular droplet swelling with a linear relationship between the water core nanodroplet radius and W(0). This represents the highest water solubilization reported to date for any water-in-CO(2) microemulsion. Further analysis of the SANS data indicated critical packing parameters for 8FG(EO)(2) at the microemulsion interface >1.34, representing approximately 1.1 times the value for common aerosol-OT in water-in-heptane microemulsions under equivalent conditions.


Langmuir | 2012

Hybrid CO2-philic surfactants with low fluorine content.

Azmi Mohamed; Masanobu Sagisaka; Martin J. Hollamby; Sarah E. Rogers; Richard K. Heenan; Robert Dyer; Julian Eastoe

The relationships between molecular architecture, aggregation, and interfacial activity of a new class of CO(2)-philic hybrid surfactants are investigated. The new hybrid surfactant CF2/AOT4 [sodium (4H,4H,5H,5H,5H-pentafluoropentyl-3,5,5-trimethyl-1-hexyl)-2-sulfosuccinate] was synthesized, having one hydrocarbon chain and one separate fluorocarbon chain. This hybrid H-F chain structure strikes a fine balance of properties, on one hand minimizing the fluorine content, while on the other maintaining a sufficient level of CO(2)-philicity. The surfactant has been investigated by a range of techniques including high-pressure phase behavior, UV-visible spectroscopy, small-angle neutron scattering (SANS), and air-water (a/w) surface tension measurements. The results advance the understanding of structure-function relationships for generating CO(2)-philic surfactants and are therefore beneficial for expanding applications of CO(2) to realize its potential using the most economic and efficient surfactants.


Langmuir | 2011

Low Fluorine Content CO2-philic Surfactants

Azmi Mohamed; Masanobu Sagisaka; Frédéric Guittard; Stephen Cummings; Alison Paul; Sarah E. Rogers; Richard K. Heenan; Robert Dyer; Julian Eastoe

The article addresses an important, and still unresolved question in the field of CO(2) science and technology: what is the minimum fluorine content necessary to obtain a CO(2)-philic surfactant? A previous publication (Langmuir 2002, 18, 3014) suggested there should be an ideal fluorination level: for optimization of possible process applications in CO(2), it is important to establish just how little F is needed to render a surfactant CO(2)-philic. Here, optimum chemical structures for water-in-CO(2) (w/c) microemulsion stabilization are identified through a systematic study of CO(2)-philic surfactant design based on dichain sulfosuccinates. High pressure small-angle neutron scattering (HP-SANS) measurements of reversed micelle formation in CO(2) show a clear relationship between F content and CO(2) compatibility of any given surfactant. Interestingly, high F content surfactants, having lower limiting aqueous surface tensions, γ(cmc), also have better performance in CO(2), as indicated by lower cloud point pressures, P(trans). The results have important implications for the rational design of CO(2)-philic surfactants helping to identify the most economic and efficient compounds for emerging CO(2) based fluid technologies.


Langmuir | 2012

Effective and Efficient Surfactant for CO2 Having Only Short Fluorocarbon Chains

Masanobu Sagisaka; Shuho Iwama; Atsushi Yoshizawa; Azmi Mohamed; Stephen Cummings; Julian Eastoe

A previous study (Langmuir2011, 27, 5772) found the fluorinated double-tail sulfogulutarate 8FG(EO)(2) to act as a superefficient solubilizer for water in supercritical CO(2) (W/CO(2)) microemulsions. To explore more economic CO(2)-philic surfactants with high solubilizing power as well as rapid solubilization rates, the effects of fluorocarbon chain length and linking group were examined with sodium 1,5-bis(1H,1H,2H,2H-perfluoroalkyloxy)-1,5-dioxopentane-2-sulfonates (nFG(EO)(2), fluorocarbon chain length n = 4, 6, 8) and sodium 1,4-bis(1H,1H,2H,2H-perfluoroalkyloxy)-1,4-dioxobutane-2-sulfonate (nFS(EO)(2), n = 4, 8). Visual observation and UV-vis spectral measurements with methyl orange as a reporter dye indicated a maximum water-to-surfactant molar ratio (W(0)) in the microemulsions, which was 60-80 for nFG(EO)(2) and 40-50 for nFG(EO)(2). Although it is normally expected that high solubilizing power requires long fluorocarbon surfactant chains, the shortest fluorocarbon 4FG(EO)(2) interestingly achieved the highest W(0) (80) transparent single-phase W/CO(2) microemulsion. In addition, a very rapid solubilization of loaded water into CO(2) was observed for 4FG(EO)(2) even at a high W(0) of ~80.


Colloid and Polymer Science | 2014

Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites

Azmi Mohamed; Argo Khoirul Anas; Suriani Abu Bakar; Azira Abd. Aziz; Masanobu Sagisaka; Paul Brown; Julian Eastoe; Azlan Kamari; Norhayati Hashim; Illyas Md Isa

The performance of single-, double- and triple-chain anionic sulphosuccinate surfactants for dispersing multiwall carbon nanotubes (MWNCTs) in natural rubber latex (NR-latex) was studied using a range of techniques, including field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. The conductivities of the nanocomposites were also investigated using four-point probe measurements. Here, MWCNTs were efficiently dispersed in NR-latex with the aid of hyperbranched tri-chain sulphosuccinate anionic surfactants, specifically sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulphonate (TC14). This paper highlights that TC14 performs much better than that of the commercially available surfactant sodium dodecyl sulphate (SDS), demonstrating how careful consideration of surfactant architecture leads to improved dispersibility of MWCNTs in NR-latex. The results should be of significant interest for improving nanowiring applications suitable for aerospace-based technology.


Langmuir | 2010

Hydrocarbon Metallosurfactants for CO2

Kieran Trickett; Dazun Xing; Julian Eastoe; Robert M. Enick; Azmi Mohamed; Martin J. Hollamby; Stephen Cummings; Sarah E. Rogers; Richard K. Heenan

Cobalt and nickel salts of the highly branched trichain anionic surfactant sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulfonate (TC14) are shown to be soluble in dense CO(2) at concentrations up to 6 wt % at 500 bar pressure. This is a remarkably high solubility for such hydrocarbon transition metal surfactants in CO(2). High-pressure small-angle neutron scattering (HP-SANS) has been used to study the surfactant aggregates in a normal organic solvent, cyclohexane, dense CO(2), and also mixtures of these two pure solvents. The results show that transition metal TC14 derivatives are viable compounds for incorporating reactive and functional metal ions into CO(2).


Langmuir | 2013

Nanostructures in Water-in-CO2 Microemulsions Stabilized by Double-Chain Fluorocarbon Solubilizers

Masanobu Sagisaka; Shuho Iwama; Shinji Ono; Atsushi Yoshizawa; Azmi Mohamed; Stephen Cummings; Ci Yan; Craig James; Sarah E. Rogers; Richard K. Heenan; Julian Eastoe

High-pressure small-angle neutron scattering (HP-SANS) studies were conducted to investigate nanostructures and interfacial properties of water-in-supercritical CO2 (W/CO2) microemulsions with double-fluorocarbon-tail anionic surfactants, having different fluorocarbon chain lengths and linking groups (glutarate or succinate). At constant pressure and temperature, the microemulsion aqueous cores were found to swell with an increase in water-to-surfactant ratio, W0, until their solubilizing capacities were reached. Surfactants with fluorocarbon chain lengths of n = 4, 6, and 8 formed spherical reversed micelles in supercritical CO2 even at W0 over the solubilizing powers as determined by phase behavior studies, suggesting formation of Winsor-IV W/CO2 microemulsions and then Winsor-II W/CO2 microemulsions. On the other hand, a short C2 chain fluorocarbon surfactant analogue displayed a transition from Winsor-IV microemulsions to lamellar liquid crystals at W0 = 25. Critical packing parameters and aggregation numbers were calculated by using area per headgroup, shell thickness, the core/shell radii determined from SANS data analysis: these parameters were used to help understand differences in aggregation behavior and solubilizing power in CO2. Increasing the microemulsion water loading led the critical packing parameter to decrease to ~1.3 and the aggregation number to increase to >90. Although these parameters were comparable between glutarate and succinate surfactants with the same fluorocarbon chain, decreasing the fluorocarbon chain length n reduced the critical packing parameter. At the same time, reducing chain length to 2 reduced negative interfacial curvature, favoring planar structures, as demonstrated by generation of lamellar liquid crystal phases.


Langmuir | 2015

Effect of Fluorocarbon and Hydrocarbon Chain Lengths in Hybrid Surfactants for Supercritical CO2

Masanobu Sagisaka; Shinji Ono; Craig James; Atsushi Yoshizawa; Azmi Mohamed; Frédéric Guittard; Sarah E. Rogers; Richard K. Heenan; Ci Yan; Julian Eastoe

Hybrid surfactants containing both fluorocarbon (FC) and hydrocarbon (HC) chains have recently been shown to solubilize water and form elongated reversed micelles in supercritical CO2. To clarify the most effective FC and HC chain lengths, the aggregation behavior and interfacial properties of hybrid surfactants FCm-HCn (FC length m/HC length n = 4/2, 4/4, 6/2, 6/4, 6/5, 6/6, and 6/8) were examined in W/CO2 mixtures as functions of pressure, temperature, and water-to-surfactant molar ratio (W0). The solubilizing power of hybrid surfactants for W/CO2 microemulsions was strongly affected by not only the FC length but also by that of the HC. Although the surfactants having short FC and/or HC tails (namely, m/n = 4/2, 4/4, and 6/2) did not dissolve in supercritical CO2 (even at ∼17 mM, ≤400 bar, temperature ≤ 75 °C, and W0 = 0-40), the other hybrid surfactants were able to yield transparent single-phase W/CO2 mixtures identified as microemulsions. The solubilizing power of FC6-HCm surfactants reached a maximum (W0 ∼ 80 at 45 °C and 350 bar) with a hydrocarbon length, m, of 4. The W0 value of 80 is the highest for a HC-FC hybrid surfactant, matching the highest value reported for a FC surfactant which contained more FC groups. High-pressure small-angle neutron scattering measurements from FCm-HCn/D2O/CO2 microemulsions were consistent with growth of the microemulsion droplets with increasing W0. In addition, not only spherical reversed micelles but also nonspherical assemblies (rodlike or ellipsoidal) were found for the systems with FC6-HCn (n = 4-6). At fixed surfactant concentration and W0 (17 mM and W0 = 20), the longest reversed micelles were obtained for FC6-HC6 where a mean aspect ratio of 6.3 was calculated for the aqueous cores.

Collaboration


Dive into the Azmi Mohamed's collaboration.

Top Co-Authors

Avatar

Norhayati Hashim

Sultan Idris University of Education

View shared research outputs
Top Co-Authors

Avatar

A.B. Suriani

Sultan Idris University of Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Illyas Md Isa

Sultan Idris University of Education

View shared research outputs
Top Co-Authors

Avatar

Azlan Kamari

Sultan Idris University of Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suriani Abu Bakar

Sultan Idris University of Education

View shared research outputs
Top Co-Authors

Avatar

M.F. Malek

Universiti Teknologi MARA

View shared research outputs
Top Co-Authors

Avatar

Mohd Khairul Ahmad

Universiti Tun Hussein Onn Malaysia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge