Azucena López-Muñoz
University of Murcia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Azucena López-Muñoz.
Journal of Immunology | 2009
María P. Sepulcre; Francisca Alcaraz-Pérez; Azucena López-Muñoz; Francisco J. Roca; José Meseguer; María L. Cayuela; Victoriano Mulero
It has long been established that lower vertebrates, most notably fish and amphibians, are resistant to the toxic effect of LPS. Furthermore, the lack of a TLR4 ortholog in some fish species and the lack of the essential costimulatory molecules for LPS activation via TLR4 (i.e., myeloid differentiation protein 2 (MD-2) and CD14) in all the fish genomes and expressed sequence tag databases available led us to hypothesize that the mechanism of LPS recognition in fish may be different from that of mammals. To shed light on the role of fish TLRs in LPS recognition, a dual-luciferase reporter assay to study NF-κB activation in whole zebrafish embryos was developed and three different bony fish models were studied: 1) the gilthead seabream (Sparus aurata, Perciformes), an immunological-tractable teleost model in which the presence of a TLR4 ortholog is unknown; 2) the spotted green pufferfish (Tetraodon nigroviridis, Tetraodontiformes), which lacks a TLR4 ortholog; and 3) the zebrafish (Danio rerio, Cypriniformes), which possesses two TLR4 orthologs. Our results show that LPS signaled via a TLR4- and MyD88-independent manner in fish, and, surprisingly, that the zebrafish TLR4 orthologs negatively regulated the MyD88-dependent signaling pathway. We think that the identification of TLR4 as a negative regulator of TLR signaling in the zebrafish, together with the absence of this receptor in most fish species, explains the resistance of fish to endotoxic shock and supports the idea that the TLR4 receptor complex for LPS recognition arose after the divergence of fish and tetrapods.
Journal of Immunology | 2008
Francisco J. Roca; Iván Mulero; Azucena López-Muñoz; María P. Sepulcre; Stephen A. Renshaw; José Meseguer; Victoriano Mulero
TNF-α is conserved in all vertebrate classes and has been identified in all taxonomic groups of teleost fish. However, its biological activities and its role in infection are largely unknown. Using two complementary fish models, gilthead seabream and zebrafish, we report here that the main proinflammatory effects of fish TNF-α are mediated through the activation of endothelial cells. Thus, TNF-α promotes the expression of E-selectin and different CC and CXC chemokines in endothelial cells, thus explaining the recruitment and activation of phagocytes observed in vivo in both species. We also found that TLR ligands, and to some extent TNF-α, were able to increase the expression of MHC class II and CD83 in endothelial cells, which might suggest a role for fish endothelial cells and TNF-α in Ag presentation. Lastly, we found that TNF-α increases the susceptibility of the zebrafish to viral (spring viremia of carp virus) and bacterial (Streptococcus iniae) infections. Although the powerful actions of fish TNF-α on endothelial cells suggest that it might facilitate pathogen dissemination, it was found that TNF-α increased antiviral genes and, more importantly, had little effect on the viral load in early infection. In addition, the stimulation of ZF4 cells with TNF-α resulted in increased viral replication. Together, these results indicate that fish TNF-α displays different sorts of bioactivity to their mammalian counterparts and point to the complexity of the evolution that has taken place in the regulation of innate immunity by cytokines.
Journal of Immunology | 2009
Azucena López-Muñoz; Francisco J. Roca; José Meseguer; Victoriano Mulero
The IFNs and their receptors have existed in early chordates for ∼500 million years and represent the early elements in innate and adaptive immunity. Both types I and II IFNs have been discovered in fish, and type I has recently been classified into two groups based on their primary protein sequences. However, the biological activities of fish IFNs and their roles in infection are largely unknown. Using the zebrafish and manageable bacterial (Streptococcus iniae) and viral (spring viremia of carp virus) infection models, we are reporting in this study that zebrafish IFN (zfIFN) γ failed to induce antiviral and proinflammatory genes when administered in vivo, which correlates with its inability to protect the fish against bacterial and viral infections. We also found that, although both group I (i.e., zfIFN1) and group II zfIFNs (i.e., zfIFN2 and zfIFN3) displayed strong in vivo antiviral activities, only group I zfIFN was able to protect the fish against bacterial infection, which may reflect the different patterns and kinetics of immune-related genes elicited by these two groups of IFNs. Thus, group II zfIFNs induced a rapid and transient expression of antiviral genes, whereas group I zfIFN exerted a slow but more powerful induction of several antiviral and proinflammatory genes. Collectively, our results suggest nonredundant, complementary roles of type I zfIFNs in viral infections and provide evidence for a pivotal role of the recently identified group II IFN of fish in the early stages of viral infections.
Cell and Tissue Research | 2005
Elena Chaves-Pozo; Pilar Muñoz; Azucena López-Muñoz; Pablo Pelegrín; Alfonsa García Ayala; Victoriano Mulero; José Meseguer
An obvious difference between the immune system of fish and mammals is that fish lack both bone marrow and lymph nodes; in their place, the head-kidney acts as a major haematopoietic and lymphoid organ in adult fish, whereas the thymus, spleen and mucosa-associated lymphoid tissues are common to both fish and mammals. This suggests that differences exist in antigen presentation and naïve lymphocyte stimulation, a prerequisite for the initiation of adaptive immune responses. Intraperitoneal injection of the bony fish gilthead seabream (Sparus aurata L.) with intact Vibrio anguillarum, as a particulate bacterial antigen, results in the mobilisation of head-kidney leucocytes to the peritoneal cavity and priming of their respiratory burst activity. We have also observed the rapid infiltration of acidophilic granulocytes, which are leucocytes functionally equivalent to mammalian neutrophils, into the spleen. These cells may be involved in antigen capture and transport to the spleen, since an apparent association between mobilised acidophilic granulocytes, bacterial antigens and proliferating lymphocytes has been seen in this organ. Collectively, these results suggest that, in addition to being actively involved in bacterial clearance, fish phagocytic granulocytes play a role in the initiation and support of the adaptive immune response.
Developmental and Comparative Immunology | 2010
Azucena López-Muñoz; Francisco J. Roca; María P. Sepulcre; José Meseguer; Victoriano Mulero
Interferons (IFNs) and their receptors exist in all classes of vertebrates, where they represent early elements in innate and adaptive immunity. Both types I and II IFNs have been discovered in fish and type I IFN has recently been classified into two groups based on their primary protein sequences and biological activities. Thus, although groups I and II zebrafish IFN show powerful antiviral activities, only group I (IFNphi1) is able to protect the fish against bacterial infection. In addition, group II IFNs (IFNphi2 and IFNphi3) induce a rapid and transient expression of antiviral genes, while group I IFN exerts a slow but more powerful induction of several antiviral and pro-inflammatory genes. To gain further insight into the IFN system of fish, we have developed a waterborne infection model of zebrafish larvae with the spring viremia of carp virus (SVCV). Larvae were challenged 3 days post-fertilization by immersion, which considerably reduces the manipulation of fish and represents a more natural route of infection. Using this infection model, we unexpectedly found an inability on the part of zebrafish larvae to mount a protecting antiviral response to waterborne SVCV. Nevertheless, zebrafish larvae showed a functional antiviral system since ectopic expression of the cDNA of both groups I and II IFN was able to protect them against SVCV via the induction of IFN-stimulated genes (ISGs). Interestingly, group II IFNs also induced group I IFN, suggesting crosstalk between these two kinds of antiviral IFN. These results further confirm the antiviral activities of type I IFN in the zebrafish and provide the first viral infection model for zebrafish larvae using a natural route of infection. This model, in combination with the powerful gene overexpression and morpholino-mediated knockdown techniques, will help to illuminate the IFN system of teleost fish.
Innate Immunity | 2012
Diego Angosto; Gloria López-Castejón; Azucena López-Muñoz; María P. Sepulcre; Marta Arizcun; José Meseguer; Victoriano Mulero
Members of the nucleotide binding and oligomerization domain-like receptors (NLRs) and the PYD and CARD domain containing adaptor protein (PYCARD) assemble into multi-protein platforms, termed inflammasomes, to mediate in the activation of caspase-1 and the subsequent secretion of IL-1β and IL-18, and the induction of pyroptotic cell death. While the recognition site for caspase-1 is well conserved in mammals, most of the non-mammalian IL-1β genes cloned so far lack this conserved site. We report here that stimulation or infection of seabream macrophages (MØ) led to the caspase-1-independent processing and release of IL-1β. In addition, several classical activators of the NLRP3 inflammasome failed to activate caspase-1 and to induce the processing and release of IL-1β. Furthermore, the processing of IL-1β in seabream MØ is not prevented by caspase-1 or pan-caspase inhibitors, and recombinant seabream caspase-1 failed to process IL-1β. However, the pharmacological inhibition of caspase-1 impaired Salmonella enterica sv. Typhimurium-induced cell death. These results suggest a role for the inflammasome and caspase-1 in the regulation of pyroptotic cell death in fish and support the idea that its use as a molecular platform for the processing of pro-inflammatory cytokines arose after the divergence of fish and tetrapods.
Molecular Immunology | 2011
María P. Sepulcre; Azucena López-Muñoz; Diego Angosto; Alicia García-Alcázar; José Meseguer; Victoriano Mulero
Neutrophils are major cells participants in innate host responses. They are short-lived leukocytes, although microbial products activate intracellular signaling cascades that prolong their survival by inhibiting constitutive apoptosis. To gain insight into the phylogeny of this important cell type, we examined the ability of toll-like receptor agonists to extend the lifespan of gilthead seabream (Sparus aurata L.) acidophilic granulocytes, which are the functional equivalent of mammalian neutrophils. The results obtained demonstrated that apoptosis was also the default state of seabream acidophilic granulocytes and that toll-like receptor agonists were able to dramatically extend their functional lifespan (up to 10 days) by inhibiting apoptosis and inducing a long lasting activation of phagocytic and respiratory burst activities, together with the expression of genes coding for several proinflammatory molecules. This process was independent on contaminating cells and interleukin-1β production. In addition, the results showed that p38 mitogen-activated protein kinase, but not nuclear factor κB, c-Jun terminal kinase or phosphatidylinositol 3-kinase, was involved in the inhibition of acidophilic granulocyte apoptosis following toll-like receptor engagement. Finally, stimulation of head kidney hematopoietic precursor cells with toll-like receptor agonists promoted their terminal differentiation to acidophilic granulocytes. These results demonstrated that the extension of neutrophil lifespan by microbial products is conserved in lower vertebrates although the magnitude of the response is much higher in fish.
Molecular Immunology | 2011
Azucena López-Muñoz; María P. Sepulcre; Francisco J. Roca; Antonio Figueras; José Meseguer; Victoriano Mulero
In mammals, IFNγ is the only type II IFN member, whereas most bony fish species have two IFNγ genes, namely IFNγ1 and IFNγ2. We report that both zebrafish IFNγ genes were unable to protect zebrafish larvae against viral infection, despite the fact that they moderately induced the expression of antiviral genes, strongly induced pro-inflammatory and antigen processing and presentation genes, and increased neutrophil numbers. Although both zebrafish IFNγs induced a similar set of immune genes, IFNγ1 was more powerful at inducing pro-inflammatory genes than IFNγ2, which correlated with its ability to promote larval death. Strikingly, IFNγ1-induced larval death was prevented by genetic ablation of the myeloid transcription factor SPI1 but not IL-1β or TNFα, suggesting that professional phagocytes are also one of the main targets of IFNγ in fish. In addition, the usefulness of the zebrafish for the identification of IFNγ-target genes is illustrated by the identification of several genes whose expression is also regulated in murine macrophages by IFNγ, namely two membrane-spanning 4-domain family members and the opioid growth factor receptor. Finally, we found for the first time that the thymic specific proteasome subunit PSMB11/β5t is regulated by IFNγ. Collectively, our data throw light on partially redundant functions of fish IFNγ genes, demonstrate that the pro-inflammatory and antigen presentation functions of IFNγ have been conserved during vertebrate evolution, and highlight the fact that zebrafish is an excellent model for studying IFNγ biology.
Journal of Immunology | 2014
Sofia de Oliveira; Azucena López-Muñoz; Sergio Candel; Pablo Pelegrín; Ângelo Calado; Victoriano Mulero
Dual oxidase 1 (Duox1) is the NADPH oxidase responsible for the H2O2 gradient formed in tissues after injury to trigger the early recruitment of leukocytes. Little is known about the signals that modulate H2O2 release from DUOX1 and whether the H2O2 gradient can orchestrate the inflammatory response in vivo. In this study, we report on a dominant-negative form of zebrafish Duox1 that is able to inhibit endogenous Duox1 activity, H2O2 release and leukocyte recruitment after tissue injury, with none of the side effects associated with morpholino-mediated Duox1 knockdown. Using this specific tool, we found that ATP release following tissue injury activates purinergic P2Y receptors, and modulates Duox1 activity through phospholipase C (PLC) and intracellular calcium signaling in vivo. Furthermore, Duox1-derived H2O2 is able to trigger the NF-κB inflammatory signaling pathway. These data reveal that extracellular ATP acting as an early danger signal is responsible for the activation of Duox1 via a P2YR/PLC/Ca2+ signaling pathway and the production of H2O2, which, in turn, is able to modulate in vivo not only the early recruitment of leukocytes to the wound but also the inflammatory response through activation of the NF-κB signaling pathway.
PLOS Biology | 2014
Sergio Candel; Sofia de Oliveira; Azucena López-Muñoz; Diana García-Moreno; Raquel Espín-Palazón; Sylwia D. Tyrkalska; María L. Cayuela; Stephen A. Renshaw; Raúl Corbalán-Vélez; Inmaculada Vidal-Abarca; Huai-Jen Tsai; José Meseguer; María P. Sepulcre; Victoriano Mulero
A new zebrafish model of skin inflammatory disease explains new-onset and worsening psoriasis and lichen planus in patients receiving anti-TNFα therapy.