B. A. Marsh
CERN
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. A. Marsh.
Review of Scientific Instruments | 2012
V. N. Fedosseev; Lars-Erik Berg; D. V. Fedorov; D. Fink; Olli Launila; R. Losito; B. A. Marsh; R. E. Rossel; S. Rothe; M. D. Seliverstov; A. M. Sjödin; K. D. A. Wendt
The resonance ionization laser ion source (RILIS) produces beams for the majority of experiments at the ISOLDE on-line isotope separator. A substantial improvement in RILIS performance has been achieved through a series of upgrade steps: replacement of the copper vapor lasers by a Nd:YAG laser; replacement of the old homemade dye lasers by new commercial dye lasers; installation of a complementary Ti:Sapphire laser system. The combined dye and Ti:Sapphire laser system with harmonics is capable of generating beams at any wavelength in the range of 210-950 nm. In total, isotopes of 31 different elements have been selectively laser-ionized and separated at ISOLDE, including recently developed beams of samarium, praseodymium, polonium, and astatine.
Journal of Physics: Conference Series | 2011
S. Rothe; B. A. Marsh; C. Mattolat; V. N. Fedosseev; K. Wendt
The Resonance Ionization Laser Ion Source (RILIS) is a powerful tool for efficient and selective production of radioactive ion beams at Isotope Separator On Line (ISOL) facilities. To avoid isobaric background, highly selective stepwise resonant ionization is applied, using up to three different laser wavelengths. Due to their advantages in terms of stability and reliability, an all solid-state titanium:sapphire (Ti:Sa) system is used or is planned to be installed at the majority of on-line facilities worldwide. Such an all solid-state Ti:Sa laser system is going to be installed at the ISOLDE RILIS at CERN alongside the well-established dye laser system.
Physical Review Letters | 2008
A. Ekström; Joakim Cederkäll; Claes Fahlander; M. Hjorth-Jensen; F. Ames; P. A. Butler; T. Davinson; J. Eberth; F. Fincke; A. Görgen; M. Gorska; D. Habs; A. M. Hurst; M. Huyse; O. Ivanov; J. Iwanicki; O. Kester; U. Köster; B. A. Marsh; J. Mierzejewski; P. Reiter; H. Scheit; D. Schwalm; S. Siem; G. Sletten; I. Stefanescu; G. M. Tveten; J. Van de Walle; P. Van Duppen; D. Voulot
The reduced transition probabilities, B(E2; 0(gs)+ -->2(1)+), have been measured in the radioactive isotopes (108,106)Sn using subbarrier Coulomb excitation at the REX-ISOLDE facility at CERN. Deexcitation gamma rays were detected by the highly segmented MINIBALL Ge-detector array. The results, B(E2;0(gs)+ -->2(1)+)=0.222(19)e2b2 for 108Sn and B(E2; 0(gs)+-->2(1)+)=0.195(39)e2b2 for 106Sn were determined relative to a stable 58Ni target. The resulting B(E2) values are approximately 30% larger than shell-model predictions and deviate from the generalized seniority model. This experimental result may point towards a weakening of the N=Z=50 shell closure.
Physical Review Letters | 2015
R.P. de Groote; I. Budinčević; J. Billowes; Mark Bissell; T. E. Cocolios; G. J. Farooq-Smith; Valentin Fedosseev; K. T. Flanagan; S. Franchoo; R.F. Garcia Ruiz; H. Heylen; R. Li; K. M. Lynch; B. A. Marsh; G. Neyens; R.E. Rossel; S. Rothe; H.H. Stroke; K. Wendt; S. G. Wilkins; X. Yang
New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t_{1/2}=22.0(5) ms] ^{219}Fr Q_{s}=-1.21(2) eb, which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in two-step resonance ionization. Exotic nuclei produced at rates of a few hundred ions/s can now be studied with high resolution, allowing detailed studies of the anchor points for nuclear theories.
In: Freeman, Sean . Rutherford Centennial Conference on Nuclear Physics : Rutherford Centennial Conference on Nuclear Physics ; 08 Aug 2011-12 Aug 2011; University of Manchester. UK: Journal of Physics: Conference Series; 2012. | 2012
T.J. Procter; H. Aghaei-Khozani; J. Billowes; M. L. Bissell; F. Le Blanc; B. Cheal; T. E. Cocolios; K. T. Flanagan; H. Hori; T. Kobayashi; D. Lunney; K. M. Lynch; B. A. Marsh; G. Neyens; J. Papuga; M. M. Rajabali; S. Rothe; G.S. Simpson; A.J. Smith; H.H. Stroke; W. Vanderheijden; K. Wendt
The CRIS (Collinear Resonant Ionisation Spectroscopy) beam line is a new experimental set up at the ISOLDE facility at CERN. CRIS is being constructed for high-resolution laser spectroscopy measurements on radioactive isotopes. These measurements can be used to extract nuclear properties of isotopes far from stability. The CRIS beam line has been under construction since 2009 and testing of its constituent parts have been performed using stable and radioactive ion beams, in preparation for its first on-line run. This paper will present the current status of the CRIS experiment and highlight results from the recent tests.
Review of Scientific Instruments | 2004
R. Catherall; V. N. Fedosseev; U. Köster; J. Lettry; G. Suberlucq; B. A. Marsh; E. Tengborn
The resonance ionization laser ion source (RILIS) of the ISOLDE on-line isotope separation facility is based on the method of laser stepwise resonance ionization of atoms in a hot metal cavity. The atomic selectivity of the RILIS compliments the mass selection process of the ISOLDE separator magnets to provide beams of a chosen isotope with greatly reduced isobaric contamination. Using a system of dye lasers pumped by copper vapor lasers, ion beams of 22 elements have been generated at ISOLDE with ionization efficiencies in the range of 0.5%–30%. As part of the ongoing RILIS development, recent off-line resonance ionization spectroscopy studies have determined the optimal three-step ionization schemes for yttrium, scandium, and antimony.
Journal of Physics G | 2010
T. E. Cocolios; A. N. Andreyev; S. Antalic; A. Barzakh; B. Bastin; J. Büscher; I G Darby; W. Dexters; D. V. Fedorov; Valentin Fedosseev; K. T. Flanagan; S. Franchoo; G. Huber; M. Huyse; M. Keupers; U. Köster; Yu. Kudryavtsev; E Mané; B. A. Marsh; P. L. Molkanov; R. D. Page; M D Seliverstov; A. M. Sjoedin; I. Stefan; J. Van de Walle; P. Van Duppen; M. Venhart; S. Zemlyanoy
Complementary studies of Pb-191 have been made in the beta decay of Bi-191 at LISOL (CRC) and in the alpha decay of Po-195 at ISOLDE (CERN). Fine structures in the alpha decay of the low-spin and h ...
Physical Review C | 2014
I. Budinčević; J. Billowes; M. L. Bissell; T. E. Cocolios; R.P. de Groote; S. De Schepper; V. N. Fedosseev; K. T. Flanagan; S. Franchoo; R.F. Garcia Ruiz; H. Heylen; K. M. Lynch; B. A. Marsh; G. Neyens; T.J. Procter; R.E. Rossel; S. Rothe; Ilya Strashnov; H.H. Stroke; K. Wendt
The magnetic dipole moments and changes in mean-square charge radii of the neutron-rich 218m,219,229,231Fr isotopes were measured with the newly installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at the On-Line Isotope Mass Separator (ISOLDE), CERN, probing the 7s2S1/2 to 8p2P3/2 atomic transition. The ??r2?A,221 values for 218m,219Fr and 229,231Fr follow the observed increasing slope of the charge radii beyond N = 126. The charge radii odd-even staggering in this neutron-rich region is discussed, showing that 220Fr has a weakly inverted odd-even staggering while 228Fr has normal staggering. This suggests that both isotopes reside at the borders of a region of inverted staggering, which has been associated with reflection-asymmetric shapes. The g(219Fr) = +0.69 (1) value supports a ?1h9/2 shell-model configuration for the ground state. The g(229,231Fr) valuessupportthetentativeI?(229,231Fr)=(1/2+) spin and point to a ?s?1 intruder ground-state configuration.
NUCLEAR FISSION AND FISSION-PRODUCT SPECTROSCOPY: 3rd International Workshop on Nuclear Fission and Fission-Product Spectroscopy | 2005
U. Köster; T. Behrens; C. Clausen; P. Delahaye; V. N. Fedoseyev; L. M. Fraile; R. Gernhäuser; T. Giles; A. Ionan; T. Kröll; H. Mach; B. A. Marsh; M. Seliverstov; T. Sieber; E. Siesling; E. Tengborn; F. Wenander; J. Van de Walle
Intense radioactive ion beams of the neutron‐rich zinc isotopes 69–81Zn have been produced at the isotope separation on‐line facility ISOLDE at CERN. The combined use of spallation‐neutron induced fission of 238UCx targets and resonant laser ionization provided sufficient suppression of disturbing isobars (mainly gallium and rubidium) to perform decay spectroscopy up to 81Zn.
Journal of Physics: Conference Series | 2012
K. M. Lynch; M. M. Rajabali; H. Aghaei-Khozani; J. Billowes; M. L. Bissell; F. Le Blanc; B. Cheal; T. E. Cocolios; S. De Schepper; K. Dewolf; K. T. Flanagan; M. Hori; T. Kobayashi; B. A. Marsh; G. Neyens; J. Papuga; T.J. Procter; S. Rothe; G.S. Simpson; A.J. Smith; H.H. Stroke; K. Wendt
The new collinear resonant ionization spectroscopy (Cris) experiment at Isolde, Cern uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes and hyperfine structure measurements. The technique also offers the ability to purify an ion beam that is contaminated with radioactive isobars, including the ground state of an isotope from its isomer. A new program using the Cris technique to select only nuclear isomeric states for decay spectroscopy commenced last year. The isomeric ion beam is selected using a resonance within its hyperfine structure and subsequently deflected to a decay spectroscopy station. This consists of a rotating wheel implantation system for alpha and beta decay spectroscopy, and up to three high purity germanium detectors for gamma-ray detection. This paper gives an introduction to the Cris technique, the current status of the laser assisted decay spectroscopy set-up and recent results from the experiment in November 2011.