Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Agulleiro is active.

Publication


Featured researches published by B. Agulleiro.


Anatomy and Embryology | 2001

Development of the digestive tract of sea bass (Dicentrarchus labrax L). Light and electron microscopic studies

M. P. García Hernández; M. T. Lozano; M.T. Elbal; B. Agulleiro

The developing gut of sea bass was studied by light and electron microscopy, four phases being established. Phase I, from hatching to the opening of the mouth, was a lecitotrophic period, in which the gut appeared as a straight undifferentiated tube lined by a simple epithelium that became stratified in the most caudal region. The epithelial cells increased in length towards the caudal zone, as did the number and height of the apical microvilli and the magnitude of the lamellar structures in their basal region. Cilia were more numerous in the caudal region than in the rest of the gut. Signs of lipid but not of protein absorption were found in the epithelial cells at this phase. Phase II, from the opening of the mouth to the complete resorption of the yolk sac, was a lecitoexotrophic period in which an esophagus, a gastric region, an intestine and a rectum, the last two separated by a valve, were present. During this phase the differentiation of the gut started at the esophagus and the rectum. In the esophagus, the epithelium became stratified and goblet cells containing acid mucosubstances, including sulphomucins, appeared. In the epithelial cells of the rectum, supranuclear vacuoles and an incipient endocytotic apparatus that seemed to be involved in the absorption and digestion of proteins were found. In both regions the mucosa was folded. Phase III, from the complete resorption of the yolk sac to the appearance of the first gastric glands, initiated the exclusively exotrophic period. During this phase the intestine formed the mucosa folds, while the first pyloric caeca and the epithelial cells acquired the ultrastructural features of mature absorptive cells with many lipid inclusions. Goblet cells containing neutral mucosubstances appeared and increased in number in both the intestine and the rectum. Neutral mucosubstances were also present in the cells lining the gastric region. During phase IV, from the appearance of the first gastric glands onwards, the intestinal absorptive surface increased with the formation of new pyloric caeca and two intestinal loops. The stomach acquired its definitive anatomy and histology with the development of the caecal and pyloric regions alongside differentiated gastric glands. The glandular cells had the ultrastructural features of the cells that secrete both pepsinogen and hydrochloride acid in the adult teleost stomach.


General and Comparative Endocrinology | 2003

FSH-, LH-, and TSH-expressing cells during development of Sparus aurata L. (Teleostei). An immunocytochemical study.

A. García Ayala; M. Villaplana; M. P. García Hernández; E. Chaves Pozo; B. Agulleiro

Follicle-stimulating hormone-like gonadotropin (FSH), luteinizing hormone-like gonadotropin (LH), and thyrotropin (TSH) cells were detected in adult and developing pituitary gland of gilthead seabream. Antisera obtained against the alpha- and beta-subunits of FSH (anti-My FSH) and the beta-subunit of LH (anti-My LHbeta), respectively, of the teleost Mediterranean yellowtail, and an antiserum against the beta-subunit of human TSH (anti-h TSHbeta), were applied to identify and follow these cells during ontogeny using light microscopy. FSH cells were immunoreactive to anti-My FSH serum, LH cells were immunoreactive to anti-My LHbeta and anti-My FSH sera, and TSH cells were immunoreactive to anti-h TSHbeta and anti-My FSH sera. In adult specimens, FSH and LH cells were located in both the proximal pars distalis (ppd) and the pars intermedia (pi) in strands or compact groups and as isolated cells. FSH cells were less numerous than LH cells. Some FSH and LH cells had a vacuolated appearance. TSH cells were mainly arranged as a mass in the anterior ppd, although some isolated cells could also be observed. FSH, LH, and TSH cells appeared at different times during development. FSH cells were observed for the first time in 22-day-old larvae and LH cells in juvenile specimens when the gonad was still undifferentiated. No vacuolated FSH and LH cells were present in larvae or juveniles. TSH cells were observed for the first time at hatching. As the fish developed, FSH, LH, and TSH cells progressively increased in number and showed the same distribution as in adult specimens.


General and Comparative Endocrinology | 1988

Immunocytochemical and ultrastructural characterization of the cell types in the adenohypophysis of Sparus aurata L. (Teleost)

J. Quesada; M.T. Lozano; A. Ortega; B. Agulleiro

The structure and immunocytochemistry of the adenohypophysis of sexually mature male specimens of Sparus aurata (gilthead sea bream) were studied. The adenohypophysis was composed of rostral pars distalis (RPD), proximal pars distalis (PPD), and pars intermedia (PI). In the RPD the prolactin cells were organized into follicles which occupied a very reduced area as corresponds to that in saltwater fishes; the corticotropic cells were surrounding the pars nervosa branches and the prolactin follicles. The PPD showed somatotropic, gonadotropic, and thyrotropic cells. The somatotropic cells were isolated, clustered, or surrounding the pars nervosa branches. Only one polymorphic cell type of gonadotropic cells was found in the PPD ventral and dorsal areas and around the PI. The PI was composed mainly of melanotropic cells and a PAS-positive cell layer adjacent to the neurohypophysis. The ultrastructure of the presumptive endocrine cells was reported and their distribution was discussed in relation to those of other teleosts.


Tissue & Cell | 1996

The adenohypophysis of Mediterranean yellowtail, Seriola dumerilii (Risso, 1810): an immunocytochemical study

Maria Pilar García-Hernández; Alfonsa García-Ayala; M.T. Elbal; B. Agulleiro

The adenohypophysis (ADH) of the Mediterranean yellowtail was studied using the peroxidase-antiperoxidase technique. Human corticotropin (ACTH) (1-24)-immunoreactive (ir) cells were found bordering the neurohypophysis (NH) and salmon prolactin (PRL)-ir cells were arranged in thick cords, both in the rostral pars distalis (RPD). Gonadotropin (GTH)-, thyrotropin (TSH)- and growth hormone (GH)-ir cells were observed in the proximal pars distalis (PPD). Anti-chum salmon GTH I and anti-chum salmon GTH II immunostained the same cells in the outermost part of the ADH at the level of the PPD and the PI. In addition to these cells, some cells grouped in the inner areas of the posterior PPD were revealed by catfish alpha, beta-GTH antiserum. Human beta-TSH-ir cells formed small groups and discontinuous strands in the PPD often in contact with the NH. Tilapia GH-ir cells formed cords mainly surrounding the NH in the central PPD, while cod somatolactin- and alpha MSH-ir cells mainly surrounded the NH branches in the PI.


Cell and Tissue Research | 1994

Ontogeny of some endocrine cells of the digestive tract in sea bass (Dicentrarchus labrax) : an immunocytochemical study

M. P. García Hernández; M. T. Lozano; B. Agulleiro

Serotonin- and ten peptide-immunoreactive (IR) cell types were identified in the digestive tract of sea bass (Dicentrarchus labrax L.) larvae of four morphofunctional phases ranging in age from hatching to 61 days. The sequence of appearance and location of endocrine cells during ontogenetic development of the larvae was determined. The differentiation of endocrine cells followed a distal-proximal gradient in the gut which paralleled the morphofunctional differentiation. Serotonin-IR cells were identified in the last portion of the digestive tract from phase I onwards and in the gastric region from phase III, before these regions were morphofunctionally differentiated; met-enkephalin-IR cells were identified from phase II onwards in both the differentiated rectum and the undifferentiated intestine; cholecystokinin (CCK)- and synthetic human gastrin-34-IR cells were located only in the intestine and first found in the undifferentiated intestine of phase II; human gastrin-17-, peptide YY (PYY)- and neuropeptide Y (NPY)-IR cells appeared in the intestine from phase II and in stomach in phase IV, when it showed gastric glands; pancreatic polypeptide (PP)- and glucagon-IR cells were observed in both intestine and stomach, but insulin- and somatostatin-IR cells only in stomach, from phase III, during which the intestine but not the stomach was differentiated. PP- and PYY-, PP- and glucagon-, and PYY- and glucagon-like immunoreactivities coexisted from their first appearance in some cells of the gut.


General and Comparative Endocrinology | 1986

An immunocytochemical and ultrastructural study of the endocrine pancreas of Sparus auratus L. (Teleostei).

M.E. Abad; B. Agulleiro; J.H.W.M. Rombout

The pancreatic endocrine cells of Sparus auratus (gilthead sea bream) are concentrated in two or three principal islets, or Brockmann bodies, and numerous smaller islets embedded in the exocrine tissue. Insulin-, glucagon-, somatostatin-, and pancreatic polypeptide (PP)-immunoreactive cells were identified in all pancreatic islets of S. auratus using an indirect immunocytochemical (PAP) method. Insulin-immunoreactive cells were found in the central region of the islets. Glucagon-immunoreactive cells could be seen at the periphery of the islets and isolated in the exocrine tissue surrounding the large principal islet. Somatostatin-immunoreactive cells were distributed throughout the islets. PP-immunoreactive cells were clustered, in a limited shallow section, being found in no other part of the large principal islet whereas, in the smaller islets, these cells were more numerous and found in the whole peripheral area. Four cell types were identified in the pancreatic islets of S. auratus by electron microscopy. A,B,D and PP cells were characterized by the shape, size, and electron density of their respective secretory granules.


General and Comparative Endocrinology | 1986

an immunocytochemical and ultrastructural study of endocrine cells in the gut of a teleost fish, Sparus auratus L.

M.T. Elbal; B. Agulleiro

Endocrine cells in the gut of Sparus auratus L. (gilt-head sea bream) have been demonstrated by immunocytochemical and electron microscopic techniques. Cells showing somatostatin and gastrin-like immunoreactivity were found in the depth of the gastric folds and in the upper part of the stomach glands while substance P immunoreactive cells were present between the upper epithelial cells of the gastric folds. Cells showing gastrin, substance P, pancreatic polypeptide, cholecystokinin, and Met-enkephalin immunoreactivity were observed in the intestinal mucosa scattered between epithelial cells. Eight types of endocrine cells were ultrastructurally characterized by the shape, size, and electron density of their respective secretory granules. A tentative correlation between these diverse cell types and those identified by immunocytochemical techniques has been established.


Journal of Morphology | 1990

Structure of the spleen of the sea bass (Dicentrarchus labrax) : a light and electron microscopic study

Juan Antonio Quesada; M. I. Viilena; B. Agulleiro

The spleen of sea bass (Dicentrarchus labrax) is composed mainly of red pulp, whereas the white pulp is poorly developed. The red pulp consists of clear reticular cells intermingled with blood cells, sinusoids, and melanomacrophage centers (MMCs). The MMCs are enclosed by an interrupted connective tissue capsule and show some areas in continuity with the adjacent pulp. The MMCs are formed by the association of free macrophages that have phagocytosed some blood cells. Sparse white pulp is diffuse, forming a cuff around the pulp arteries and MMCs, or occurring in small groups between the splenic cords. A longitudinal artery and vein, lying side by side, extend the length of the spleen. Frequently the capillaries are surrounded by a sheath of macrophages or ellipsoids. These macrophages may contain erythrocytes in varying degrees of degradation. Lymphopoiesis and plasmapoiesis occur in the sparse lymphold areas. Abundant plasma cell groups may indicate the presence of antibody production.


Cell and Tissue Research | 1992

Ontogeny of the endocrine pancreas in sea bass (Dicentrarchus labrax)

M. P. García Hernández; B. Agulleiro

SummaryThe development of the endocrine pancreas of the teleost sea bass (Dicentrarchus labrax, L.) was examined from hatching to 61 days, using the peroxidase-antiperoxidase technique for light microscopy. Mammalian and bonito insulin (mI and bI)-, salmo somatostatin-25 (SST-25)-, somatostatin-14 (SST-14a and b)-, glucagon-, bovine pancreatic polypeptide (PP)-, peptide tyrosine-tyrosine (PYY)- and salmo neuropeptide Y (NPY)-like immunoreactivity was demonstrated. Four ontogenetic stages were established according to the organization and immunostaining of the endocrine cells. One cell strand or primordial cord showing mI/bI- and SST-25/SST-14a-like immunoreactivity was first found at hatching in the dorsal epithelium of the anterior zone of the midgut (stage 1). One primitive islet, comprising outer SST-25/SST-14a- and inner mI/bI- and SST-14a/ SST-14b-immunoreactive cells, was found in 2- to 5-day-old larvae (stage 2). One single islet, in which glucagon-immunoreactive cells appear in the periphery, was found in larvae from 9 to 20 days after hatching (stage 3). One big islet containing, in addition, PP-immunoreactive cells in the outer region and slender cell processes which showed PYY-like immunoreactivity, was found from 25 to 61 days after hatching. During this period, primordial islets, composed of SST-25- and bI-immunoreactive cells, and clustered or isolated pancreatic endocrine cells, close to the pancreatic duct, as well as small and intermediate islets (secondary islets), in which glucagon, PP, PYY and NPY seem to be co-localized, were progressively found (stage 4). The origin of the endocrine pancreas of sea bass, and the ontogenetic and phylogenetic significance, are discussed.


General and Comparative Endocrinology | 1988

The endocrine cells in the gut of Mugil saliens Risso, 1810 (Teleostei): An immunocytochemical and ultrastructural study

M.T. Elbal; M.T. Lozano; B. Agulleiro

The endocrine cells in the gut of Mugil saliens Risso, 1810 (leaping grey mullet) were investigated by immunocytochemical and electron microscopic techniques. Gastrin-, glucagon-, and somatostatin-immunoreactive cells were identified in the cardiac and cecal stomach regions, located mainly in the lower part of the gastric folds and in the upper part of the glands. Substance P-, somatostatin-, and pancreatic polypeptide (PP)-immunoreactive cells were found between epithelial cells in the pyloric stomach region. Gastrin-, cholecystokinin (CCK)-, gastric inhibitory polypeptide (GIP)-, substance P-, Met-enkephalin- and PP-immunoreactive cells were observed throughout the intestine while only the last three of these appeared in the posterior intestine. Nine types of gastroenteroendocrine cells were ultrastructurally characterized; some of them were related to the cell types immunocytochemically identified.

Collaboration


Dive into the B. Agulleiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge