Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Andrei Bernevig is active.

Publication


Featured researches published by B. Andrei Bernevig.


Science | 2006

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells

B. Andrei Bernevig; Taylor L. Hughes; Shou-Cheng Zhang

We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercury telluride–cadmium telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the electronic state changes from a normal to an “inverted” type at a critical thickness dc. We show that this transition is a topological quantum phase transition between a conventional insulating phase and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss methods for experimental detection of the QSH effect.


Physical Review Letters | 2006

Quantum Spin Hall Effect

B. Andrei Bernevig; Shou-Cheng Zhang

The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. The existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2(e/4pi). The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.


Nature | 2015

Type-II Weyl semimetals

Alexey A. Soluyanov; Dominik Gresch; Zhijun Wang; QuanSheng Wu; Matthias Troyer; Xi Dai; B. Andrei Bernevig

Fermions—elementary particles such as electrons—are classified as Dirac, Majorana or Weyl. Majorana and Weyl fermions had not been observed experimentally until the recent discovery of condensed matter systems such as topological superconductors and semimetals, in which they arise as low-energy excitations. Here we propose the existence of a previously overlooked type of Weyl fermion that emerges at the boundary between electron and hole pockets in a new phase of matter. This particle was missed by Weyl because it breaks the stringent Lorentz symmetry in high-energy physics. Lorentz invariance, however, is not present in condensed matter physics, and by generalizing the Dirac equation, we find the new type of Weyl fermion. In particular, whereas Weyl semimetals—materials hosting Weyl fermions—were previously thought to have standard Weyl points with a point-like Fermi surface (which we refer to as type-I), we discover a type-II Weyl point, which is still a protected crossing, but appears at the contact of electron and hole pockets in type-II Weyl semimetals. We predict that WTe2 is an example of a topological semimetal hosting the new particle as a low-energy excitation around such a type-II Weyl point. The existence of type-II Weyl points in WTe2 means that many of its physical properties are very different to those of standard Weyl semimetals with point-like Fermi surfaces.


Science | 2014

Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor

Stevan Nadj-Perge; Ilya Drozdov; Jian Li; Hua Chen; Sangjun Jeon; Jungpil Seo; A. H. MacDonald; B. Andrei Bernevig; Ali Yazdani

A possible sighting of Majorana states Nearly 80 years ago, the Italian physicist Ettore Majorana proposed the existence of an unusual type of particle that is its own antiparticle, the so-called Majorana fermion. The search for a free Majorana fermion has so far been unsuccessful, but bound Majorana-like collective excitations may exist in certain exotic superconductors. Nadj-Perge et al. created such a topological superconductor by depositing iron atoms onto the surface of superconducting lead, forming atomic chains (see the Perspective by Lee). They then used a scanning tunneling microscope to observe enhanced conductance at the ends of these chains at zero energy, where theory predicts Majorana states should appear. Science, this issue p. 602; see also p. 547 Scanning tunneling microscopy is used to observe signatures of Majorana states at the ends of iron atom chains. [Also see Perspective by Lee] Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconducting lead (Pb). Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states. This spatially resolved signature provides strong evidence, corroborated by other observations, for the formation of a topological phase and edge-bound Majorana fermions in our atomic chains.


Physical Review Letters | 2006

Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System

B. Andrei Bernevig; J. Orenstein; Shou-Cheng Zhang

Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constants, and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions and is generated by operators whose wave vector depends on the coupling strength. It renders the spin lifetime infinite at this wave vector, giving rise to a persistent spin helix. We obtain the spin fluctuation dynamics at, and away from, the symmetry point and suggest experiments to observe the persistent spin helix.


Science | 2016

Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals

Barry Bradlyn; Jennifer Cano; Zhijun Wang; Maia G. Vergniory; Claudia Felser; R. J. Cava; B. Andrei Bernevig

INTRODUCTION Condensed-matter systems have recently become a fertile ground for the discovery of fermionic particles and phenomena predicted in high-energy physics; examples include Majorana fermions, as well as Dirac and Weyl semimetals. However, fermions in condensed-matter systems are not constrained by Poincare symmetry. Instead, they must only respect the crystal symmetry of one of the 230 space groups. Hence, there is the potential to find and classify free fermionic excitations in solid-state systems that have no high-energy counterparts. RATIONALE The guiding principle of our classification is to find irreducible representations of the little group of lattice symmetries at high-symmetry points in the Brillouin zone (BZ) for each of the 230 space groups (SGs), the dimension of which corresponds to the number of bands that meet at the high-symmetry point. Because we are interested in systems with spin-orbit coupling, we considered only the double-valued representations, where a 2π rotation gives a minus sign. Furthermore, we considered systems with time-reversal symmetry that squares to –1. For each unconventional representation, we computed the low-energy k · p Hamiltonian near the band crossings by writing down all terms allowed by the crystal symmetry. This allows us to further differentiate the band crossings by the degeneracy along lines and planes that emanate from the high-symmetry point, and also to compute topological invariants. For point degeneracies, we computed the monopole charge of the band-crossing; for line nodes, we computed the Berry phase of loops encircling the nodes. RESULTS We found that three space groups exhibit symmetry-protected three-band crossings. In two cases, this results in a threefold degenerate point node, whereas the third case results in a line node away from the high-symmetry point. These crossings are required to have a nonzero Chern number and hence display surface Fermi arcs. However, upon applying a magnetic field, they have an unusual Landau level structure, which distinguishes them from single and double Weyl points. Under the action of spatial symmetries, these fermions transform as spin-1 particles, as a consequence of the interplay between nonsymmorphic space group symmetries and spin. Additionally, we found that six space groups can host sixfold degeneracies. Two of these consist of two threefold degeneracies with opposite chirality, forced to be degenerate by the combination of time reversal and inversion symmetry, and can be described as “sixfold Dirac points.” The other four are distinct. Furthermore, seven space groups can host eightfold degeneracies. In two cases, the eightfold degeneracies are required; all bands come in groups of eight that cross at a particular point in the BZ. These two cases also exhibit fourfold degenerate line nodes, from which other semimetals can be derived: By adding strain or a magnetic field, these line nodes split into Weyl, Dirac, or line node semimetals. For all the three-, six- and eight-band crossings, nonsymmorphic symmetries play a crucial role in protecting the band crossing. Last, we found that seven space groups may host fourfold degenerate “spin-3/2” fermions at high symmetry points. Like their spin-1 counterparts, these quasiparticles host Fermi surfaces with nonzero Chern number. Unlike the other cases we considered, however, these fermions can be stabilized by both symmorphic and nonsymmorphic symmetries. Three space groups that host these excitations also host unconventional fermions at other points in the BZ. We propose nearly 40 candidate materials that realize each type of fermion near the Fermi level, as verified with ab initio calculations. Seventeen of these have been previously synthesized in single-crystal form, whereas others have been reported in powder form. CONCLUSION We have analyzed all types of fermions that can occur in spin-orbit coupled crystals with time-reversal symmetry and explored their topological properties. We found that there are several distinct types of such unconventional excitations, which are differentiated by their degeneracies at and along high-symmetry points, lines, and surfaces. We found natural generalizations of Weyl points: three- and four-band crossings described by a simple k · S Hamiltonian, where Si is the set of spin generators in either the spin-1 or spin-3/2 representations. These points carry a Chern number and, consequently, can exhibit Fermi arc surface states. We also found excitations with six- and eightfold degeneracies. These higher-band crossings create a tunable platform to realize topological semimetals by applying an external magnetic field or strain to the fourfold degenerate line nodes. Last, we propose realizations for each species of fermion in known materials, many of which are known to exist in single-crystal form. Fermi arcs from a threefold degeneracy. Shown is the surface density of states as a function of momentum for a crystal in SG 214 with bulk threefold degeneracies that project to (0.25, 0.25) and (–0.25, –0.25). Two Fermi arcs emanate from these points, indicating that their monopole charge is 2. The arcs then merge with the surface projection of bulk states near the origin. In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here, we show that in solid-state systems this classification is incomplete, and we find several additional types of crystal symmetry–protected free fermionic excitations. We exhaustively classify linear and quadratic three-, six-, and eight-band crossings stabilized by space group symmetries in solid-state systems with spin-orbit coupling and time-reversal symmetry. Several distinct types of fermions arise, differentiated by their degeneracies at and along high-symmetry points, lines, and surfaces. Some notable consequences of these fermions are the presence of Fermi arcs in non-Weyl systems and the existence of Dirac lines. Ab initio calculations identify a number of materials that realize these exotic fermions close to the Fermi level.


Nature Physics | 2014

One-dimensional Topological Edge States of Bismuth Bilayers

Ilya Drozdov; Aris Alexandradinata; Sangjun Jeon; Stevan Nadj-Perge; H. Ji; R. J. Cava; B. Andrei Bernevig; Ali Yazdani

The conducting surface states of 3D topological insulators are two-dimensional. In an analogous way, the edge states of 2D topological insulators are one-dimensional. Direct evidence of this one-dimensionality is now presented, by means of scanning tunnelling spectroscopy, for bismuth bilayers—one of the first theoretically predicted 2D topological insulators.


Nature | 2017

Topological quantum chemistry

Barry Bradlyn; Luis Elcoro; Jennifer Cano; Maia G. Vergniory; Zhijun Wang; Claudia Felser; Mois I. Aroyo; B. Andrei Bernevig

Since the discovery of topological insulators and semimetals, there has been much research into predicting and experimentally discovering distinct classes of these materials, in which the topology of electronic states leads to robust surface states and electromagnetic responses. This apparent success, however, masks a fundamental shortcoming: topological insulators represent only a few hundred of the 200,000 stoichiometric compounds in material databases. However, it is unclear whether this low number is indicative of the esoteric nature of topological insulators or of a fundamental problem with the current approaches to finding them. Here we propose a complete electronic band theory, which builds on the conventional band theory of electrons, highlighting the link between the topology and local chemical bonding. This theory of topological quantum chemistry provides a description of the universal (across materials), global properties of all possible band structures and (weakly correlated) materials, consisting of a graph-theoretic description of momentum (reciprocal) space and a complementary group-theoretic description in real space. For all 230 crystal symmetry groups, we classify the possible band structures that arise from local atomic orbitals, and show which are topologically non-trivial. Our electronic band theory sheds new light on known topological insulators, and can be used to predict many more.


Physical Review X | 2011

Fractional Chern insulator

Nicolas Regnault; B. Andrei Bernevig

Chern insulators are band insulators exhibiting a nonzero Hall conductance but preserving the lattice translational symmetry. We conclusively show that a partially filled Chern insulator at 1/3 filling exhibits a fractional quantum Hall effect and rule out charge-density wave states that have not been ruled out by previous studies. By diagonalizing the Hubbard interaction in the flat-band limit of these insulators, we show the following: The system is incompressible and has a 3-fold degenerate ground state whose momenta can be computed by postulating an generalized Pauli principle with no more than 1 particle in 3 consecutive orbitals. The ground state density is constant, and equal to 1/3 in momentum space. Excitations of the system are fractional statistics particles whose total counting matches that of quasiholes in the Laughlin state based on the same generalized Pauli principle. The entanglement spectrum of the state has a clear entanglement gap which seems to remain finite in the thermodynamic limit. The levels below the gap exhibit counting identical to that of Laughlin 1/3 quasiholes. Both the 3 ground states and excited states exhibit spectral flow upon flux insertion. All the properties above disappear in the trivial state of the insulator - both the many-body energy gap and the entanglement gap close at the phase transition when the single-particle Hamiltonian goes from topologically nontrivial to topologically trivial. These facts clearly show that fractional many-body states are possible in topological insulators.


Physical Review Letters | 2005

Intrinsic Spin Hall Effect in the Two-Dimensional Hole Gas

B. Andrei Bernevig; Shou-Cheng Zhang

We show that two types of spin-orbit coupling in the 2 dimensional hole gas, with and without inversion symmetry breaking, contribute to the intrinsic spin-Hall effect. Furthermore, the vertex correction due to impurity scattering vanishes in both cases, in sharp contrast to the case of usual Rashba coupling in the electron band. Recently, the spin-Hall effect in a hole doped GaAs semiconductor has been observed experimentally by Wunderlich et al. [ Phys. Rev. Lett. 94, 047204 (2005).]. From the fact that the lifetime broadening is smaller than the spin splitting, and the fact impurity vertex corrections vanish in this system, we argue that the observed spin-Hall effect should be in the intrinsic regime.

Collaboration


Dive into the B. Andrei Bernevig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Li

Princeton University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maia G. Vergniory

Donostia International Physics Center

View shared research outputs
Top Co-Authors

Avatar

Jiangping Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge