B. Bernhardt
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. Bernhardt.
Science | 2004
G. Klingelhöfer; Richard V. Morris; B. Bernhardt; C. Schröder; D. Rodionov; P. A. de Souza; Albert S. Yen; Ralf Gellert; E. N. Evlanov; B. Zubkov; J. Foh; U. Bonnes; E. Kankeleit; P. Gütlich; Douglas W. Ming; Franz Renz; Thomas J. Wdowiak; Steven W. Squyres; Raymond E. Arvidson
Mössbauer spectra measured by the Opportunity rover revealed four mineralogical components in Meridiani Planum at Eagle crater: jarosite- and hematite-rich outcrop, hematite-rich soil, olivine-bearing basaltic soil, and a pyroxene-bearing basaltic rock (Bounce rock). Spherules, interpreted to be concretions, are hematite-rich and dispersed throughout the outcrop. Hematitic soils both within and outside Eagle crater are dominated by spherules and their fragments. Olivine-bearing basaltic soil is present throughout the region. Bounce rock is probably an impact erratic. Because jarosite is a hydroxide sulfate mineral, its presence at Meridiani Planum is mineralogical evidence for aqueous processes on Mars, probably under acid-sulfate conditions.
Journal of Geophysical Research | 2006
Richard V. Morris; G. Klingelhöfer; C. Schröder; D. Rodionov; Albert S. Yen; D. W. Ming; P. A. de Souza; Thomas J. Wdowiak; Iris Fleischer; R. Gellert; B. Bernhardt; U. Bonnes; Barbara A. Cohen; E. N. Evlanov; J. Foh; P. Gütlich; E. Kankeleit; Timothy J. McCoy; D. W. Mittlefehldt; Franz Renz; Mariek E. Schmidt; B. Zubkov; S. W. Squyres; Raymond E. Arvidson
Additonal co-authors: P Gutlich, E Kankeleit, T McCoy, DW Mittlefehldt, F Renz, ME Schmidt, B Zubkov, SW Squyres, RE Arvidson
Hyperfine Interactions | 2002
G. Klingelhöfer; B. Bernhardt; J. Foh; U. Bonnes; D. Rodionov; P. A. de Souza; Ch. Schröder; R. Gellert; S. Kane; P. Gütlich; E. Kankeleit
In May and July 2003 both the European space agency ESA and the American space agency NASA will launch space missions to Mars. The ESA lander Beagle 2 and the two NASAMars-Exploration-Rovers (MER) will explore the Martian surface with a set of sophisticated instruments. Part of the payload will be our miniaturized Mossbauer spectrometer MIMOS II. It operates in backscattering geometry and meets the requirements for space application of low mass (⩽500 g), small volume (coke can size), and low power consumption (⩽3 W). Main goals are the determination of the oxidation state of iron and the iron mineralogy on the surface. This information will contribute to a much deeper understanding of the evolution of the planet Mars, its surface and atmosphere, and the history of water. The MIMOS II flight units for MER were delivered in April 2002 to the NASA Jet Propulsion Laboratories (JPL), California, for integration to the Rovers. After some more testing of the complete Rover system the spacecraft will be shipped to the Kennedy Space Center early February 2003. The first launch will be in May 2003 and the second launch in late June on early July 2003. The flight unit for the ESA Mars-Express Beagle lander was delivered to ESA by the end of May 2002 for integration to the lander in late November/early December 2002. The launch is scheduled for June 2003 from Baikonur, Kazakhstan. The instrument MIMOS II is also under consideration for an ESA space mission to Mercury in 2009, and it is part of the ESA exobiology multi-user facility to be launched as part of one of the next lander Mars missions after 2005.
Hyperfine Interactions | 1998
G. Klingelhöfer; P. Held; B. Bernhardt; J. Foh; R. Teucher; E. Kankeleit
The element iron plays a major role in modern industries and technologies as for instance car-industry, mineral processing and steel production and power plants. For quality control, process monitoring and device inspection (e.g., pipes in power plants) a fast, non-destructive and sensitive analytical method is desirable. 57Fe Mössbauer spectroscopy is able to determine the different iron phases (e.g., oxides, sulfides, nitrates, carbonates and carbides) and therefore would be the ideal tool to perform this job. We have developed a miniaturized backscattering Mössbauer spectrometer for space applications which will be modified and used for industrial applications under certain circumstances. The instrument is designed in a modular way which would allow to adapt it to different applications. The instrument has approximately the size of a soft drink can, a weight of about 0.5 kg, and a power consumption of about 3 watts.
IEEE Robotics & Automation Magazine | 2008
Andre Schiele; Jens Romstedt; Christopher Lee; Hartmut Henkel; Sabine Klinkner; Reinhold Bertrand; R. Rieder; Ralf Gellert; G. Klingelhöfer; B. Bernhardt; Harald Michaelis
The European Space Agency (ESA) is currently concluding a dedicated technology development to mature and finalize the Nanokhod microrover into a complete engineering model with integrated geochemical payload package. The goal of this development is to build and test the Nanokhod such that it can serve a wide range of mission applications in the future. The rover will be able to deliver scientific payloads to not only atmospheric planets such as Mars but also environmentally more extreme nonatmospheric celestial bodies such as Mercury or the Moon. The Nanokhod rover is a payload-efficient system that can be used to send a maximum amount of scientific payload to a planetary surface with the minimum rover mass. The high payload to total mass ratio of about 0.27 can enable low-cost planetary surface exploration missions where total available mass and power is extremely restricted.
Journal of Aerospace Engineering | 2013
Inge L. ten Kate; Rob Armstrong; B. Bernhardt; Mathias Blumers; Jack Craft; Dale Boucher; Eric Caillibot; Janine Captain; Gabriele M. T. D'Eleuterio; Jack D. Farmer; Daniel P. Glavin; T. G. Graff; John C. Hamilton; G. Klingelhöfer; Richard V. Morris; J. I. Nunez; Jacqueline Quinn; Gerald B. Sanders; R. Glenn Sellar; Leanne Sigurdson; Ross Taylor; Kris Zacny
The major advances in knowledge of extraterrestrial bodies come from in situ measurements on robotized measuring devices deployed by international space missions, for example, on the Moon and Mars. It is essential to test these instruments in environments on Earth thatbearacloseresemblancetoplanetaryconditions.Withintheframeworkofthe2010InternationalLunarSurfaceOperationInSituResource Utilization (2010 ILSO-ISRU) Analog Test, a suite of scientific instruments developed for in situ lunar research was field tested and cali- brated on the Mauna Kea volcano in Hawaii on January 27 to February 11, 2010. This site will beused as one ofthe future standard test sites to calibrate instruments forin situ lunarresearch.In 2010, atotalof eight scientificteams tested instrument capabilities at the test site.In this paper, a geological setting for this new field-test site, a description of the instruments that were tested during the 2010 ILSO-ISRU field campaign, and a short discussion of each instrument about the validity and use of the results obtained during the test are provided. These results will serve as reference for future test campaigns. DOI: 10.1061/(ASCE)AS.1943-5525.0000200.
Geochemistry-exploration Environment Analysis | 2011
C. Schröder; G. Klingelhöfer; Richard V. Morris; B. Bernhardt; Mathias Blumers; Iris Fleischer; D. Rodionov; Jordi Gironés López; Paulo de Souza
ABSTRACT Iron occurs naturally as Fe2+, Fe3+, and, to a lesser extent, as Fe0. Many fundamental (bio)geochemical processes are based on redox cycling between these oxidation states. Mössbauer spectroscopy provides quantitative information about the distribution of Fe among its oxidation states, identification of Fe-bearing phases, and relative distribution of Fe among those phases. Portable, miniaturised Mössbauer spectrometers were developed for NASAs Mars Exploration Rovers (in operation since 2004) and provide a means for non-destructive, in-situ field investigations. On Mars, these instruments provided evidence for aqueous activity with implications for habitability, were applied in geological mapping of the landing sites, and helped to identify meteorites, for example. On Earth, they were used in field studies of green rust, the identification of air pollution sources, or the study of archaeological artefacts. Their application to in-situ resource utilisation (ISRU) on the Moon has been demonstrated in a recent NASA field test of hardware for oxygen production. A new detector system in an advanced version of these instruments is based on Si Drift Detectors and permits the simultaneous acquisition of X-ray fluorescence spectra to determine elemental compositions.
International Conference on Space Optics — ICSO 2006 | 2017
Hartmut Henkel; B. Bernhardt; J. Pereira do Carmo
Within ESA’s Innovation Triangle Initiative (ITI) a demonstrator breadboard for a micro-ranging-laser device “MYLRAD” has been developed. Its working principle is the measurement of the round-trip delay time of a laser beam as a phase shift. The demonstrator consists of the laser diode (30 mW, square wave AM), optics, APD detector, narrowband preamplifier, limiter, and a phase digitiser based on a novel noise-shaping synchroniser (NSS) circuit; this works without ADCs and can be built from rad-hard components for space. The system timing and the digitiser algorithm are performed by an FPGA. The demonstrator has been tested at ranges from 1 m to 30 m. With a static non-cooperative target an RMS noise of 1 mm at a result rate of 60 Hz was reached. The demonstrator needs less than 2.5 W power.
ieee nuclear science symposium | 2011
G. Klingelhöfer; J. Gironés López; Janice S. Bruckner; C. d'Uston; D. Schmanke; Mathias Blumers; B. Bernhardt; P. Lechner
Both Alpha Particle X-ray Spectrometer (APXS) and the Miniaturized Moessbauer Spectrometer (MIMOS II) have shown their performances in space missions and terrestrial applications. Taking advantage of the challenges of space missions both instruments have become very powerful tools, even small in mass and dimensions.
international conference on research and education in robotics | 2008
Sabine Klinkner; Christopher Lee; H.-P. Röser; G. Klingelhöfer; B. Bernhardt; Iris Fleischer; D. Rodionov; Mathias Blumers
Mobility is a key feature for any science mission and for space exploration in general. Missions with mobile systems provide a much wider spectrum of outcomes by employing a higher number of samples within an increased area of exploration. The additional degree of freedom of a rover in comparison to a lander or even a robotic arm allows the mission to be flexibly adapted to the landing site as it is encountered.