Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B.C.J. Hamel is active.

Publication


Featured researches published by B.C.J. Hamel.


American Journal of Human Genetics | 2004

X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the Neuroligin family

Frédéric Laumonnier; Frédérique Bonnet-Brilhault; Marie Gomot; Romuald Blanc; Albert David; Marie-Pierre Moizard; Martine Raynaud; Nathalie Ronce; Eric Lemonnier; Patrick Calvas; Béatrice Laudier; Jamel Chelly; Jean-Pierre Fryns; Hans-Hilger Ropers; B.C.J. Hamel; Christian Andres; Catherine Barthélémy; Claude Moraine; Sylvain Briault

A large French family including members affected by nonspecific X-linked mental retardation, with or without autism or pervasive developmental disorder in affected male patients, has been found to have a 2-base-pair deletion in the Neuroligin 4 gene (NLGN4) located at Xp22.33. This mutation leads to a premature stop codon in the middle of the sequence of the normal protein and is thought to suppress the transmembrane domain and sequences important for the dimerization of neuroligins that are required for proper cell-cell interaction through binding to beta-neurexins. As the neuroligins are mostly enriched at excitatory synapses, these results suggest that a defect in synaptogenesis may lead to deficits in cognitive development and communication processes. The fact that the deletion was present in both autistic and nonautistic mentally retarded males suggests that the NLGN4 gene is not only involved in autism, as previously described, but also in mental retardation, indicating that some types of autistic disorder and mental retardation may have common genetic origins.


Cell | 1999

Heterozygous Germline Mutations in the p53 Homolog p63 Are the Cause of EEC Syndrome

Jacopo Celli; Pascal H.G. Duijf; B.C.J. Hamel; Michael J. Bamshad; Bridget Kramer; Arie P.T. Smits; Ruth Newbury-Ecob; Raoul C. M. Hennekam; Griet Van Buggenhout; Arie van Haeringen; C. Geoffrey Woods; Anthonie J. van Essen; Rob M.W. de Waal; Gert Vriend; Daniel A. Haber; Annie Yang; Frank McKeon; Han G. Brunner; Hans van Bokhoven

EEC syndrome is an autosomal dominant disorder characterized by ectrodactyly, ectodermal dysplasia, and facial clefts. We have mapped the genetic defect in several EEC syndrome families to a region of chromosome 3q27 previously implicated in the EEC-like disorder, limb mammary syndrome (LMS). Analysis of the p63 gene, a homolog of p53 located in the critical LMS/EEC interval, revealed heterozygous mutations in nine unrelated EEC families. Eight mutations result in amino acid substitutions that are predicted to abolish the DNA binding capacity of p63. The ninth is a frameshift mutation that affects the p63alpha, but not p63beta and p63gamma isotypes. Transactivation studies with these mutant p63 isotypes provide a molecular explanation for the dominant character of p63 mutations in EEC syndrome.


Nature Genetics | 2006

Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus

Yanick J. Crow; Bruce E. Hayward; Rekha Parmar; Peter Robins; Andrea Leitch; Manir Ali; Deborah N. Black; Hans van Bokhoven; Han G. Brunner; B.C.J. Hamel; Peter Corry; Frances Cowan; Suzanne Frints; Joerg Klepper; John H. Livingston; Sally Ann Lynch; R.F. Massey; Jean François Meritet; Jacques L. Michaud; Gérard Ponsot; Thomas Voit; Pierre Lebon; David T. Bonthron; Andrew P. Jackson; Deborah E. Barnes; Tomas Lindahl

Aicardi-Goutières syndrome (AGS) presents as a severe neurological brain disease and is a genetic mimic of the sequelae of transplacentally acquired viral infection. Evidence exists for a perturbation of innate immunity as a primary pathogenic event in the disease phenotype. Here, we show that TREX1, encoding the major mammalian 3′ → 5′ DNA exonuclease, is the AGS1 gene, and AGS-causing mutations result in abrogation of TREX1 enzyme activity. Similar loss of function in the Trex1−/− mouse leads to an inflammatory phenotype. Our findings suggest an unanticipated role for TREX1 in processing or clearing anomalous DNA structures, failure of which results in the triggering of an abnormal innate immune response.


Nature Genetics | 2009

Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response

Gillian I. Rice; Jacquelyn Bond; Aruna Asipu; Rebecca L. Brunette; Iain W. Manfield; Ian M. Carr; Jonathan C. Fuller; Richard M. Jackson; Teresa Lamb; Tracy A. Briggs; Manir Ali; Hannah Gornall; Alec Aeby; Simon P Attard-Montalto; Enrico Bertini; C. Bodemer; Knut Brockmann; Louise Brueton; Peter Corry; Isabelle Desguerre; Elisa Fazzi; Angels Garcia Cazorla; Blanca Gener; B.C.J. Hamel; Arvid Heiberg; Matthew Hunter; Marjo S. van der Knaap; Ram Kumar; Lieven Lagae; Pierre Landrieu

Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.


Nature | 1998

Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation

Pierre Billuart; Thierry Bienvenu; Nathalie Ronce; V. des Portes; Marie-Claude Vinet; Ramzi Zemni; H.R. Crollius; Alain Carrié; F. Fauchereau; M. Cherry; Sylvain Briault; B.C.J. Hamel; Jean Pierre Fryns; Cherif Beldjord; Axel Kahn; Claude Moraine; Jamel Chelly

Primary or nonspecific X-linked mental retardation (MRX) is a heterogeneous condition in which affected patients do not have any distinctive clinical or biochemical features in common apart from cognitive impairment. Although it is present in approximately 0.15–0.3% of males, most of the genetic defects associated with MRX, which may involve more than ten different genes, remain unknown. Here we report the characterization of a new gene on the long arm of the X-chromosome (position Xq12) and the identification in unrelated individuals of different mutations that are predicted to cause a loss of function. This gene is highly expressed in fetal brain and encodes a protein of relative molecular mass 91K, named oligophrenin-1, which contains a domain typical of a Rho-GTPase–activating protein (rhoGAP),. By enhancing their GTPase activity, GAP proteins inactivate small Rho and Ras proteins, so inactivation of rhoGAP proteins might cause constitutive activation of their GTPase targets. Such activation is known to affect cell migration and outgrowth of axons and dendrites in vivo,. Our results demonstrate an association between cognitive impairment and a defect in a signalling pathway that depends on a Ras-like GTPase.


Nature Reviews Genetics | 2005

X-linked mental retardation.

Hans-Hilger Ropers; B.C.J. Hamel

Genetic factors have an important role in the aetiology of mental retardation. However, their contribution is often underestimated because in developed countries, severely affected patients are mainly sporadic cases and familial cases are rare. X-chromosomal mental retardation is the exception to this rule, and this is one of the reasons why research into the genetic and molecular causes of mental retardation has focused almost entirely on the X-chromosome. Here, we review the remarkable recent progress in this field, its promise for understanding neural function, learning and memory, and the implications of this research for health care.


Nature Genetics | 2000

Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation.

Kerstin Kutsche; H.G. Yntema; A. Brandt; I. Jantke; Hans Gerd Nothwang; Ulrike Orth; M.G. Boavida; D. David; Jamel Chelly; Jean Pierre Fryns; Claude Moraine; H.H. Ropers; B.C.J. Hamel; J.H.L.M. van Bokhoven; Andreas Gal

X-linked forms of mental retardation (XLMR) include a variety of different disorders and may account for up to 25% of all inherited cases of mental retardation. So far, seven X-chromosomal genes mutated in nonspecific mental retardation (MRX) have been identified: FMR2, GDI1, RPS6KA3, IL1RAPL, TM4SF2, OPHN1 and PAK3 (refs 2–9). The products of the latter two have been implicated in regulation of neural plasticity by controlling the activity of small GTPases of the Rho family. Here we report the identification of a new MRX gene, ARHGEF6 (also known as αPIX or Cool-2), encoding a protein with homology to guanine nucleotide exchange factors for Rho GTPases (Rho GEF). Molecular analysis of a reciprocal X/21 translocation in a male with mental retardation showed that this gene in Xq26 was disrupted by the rearrangement. Mutation screening of 119 patients with nonspecific mental retardation revealed a mutation in the first intron of ARHGEF6 (IVS1-11T→C) in all affected males in a large Dutch family. The mutation resulted in preferential skipping of exon 2, predicting a protein lacking 28 amino acids. ARHGEF6 is the eighth MRX gene identified so far and the third such gene to encode a protein that interacts with Rho GTPases.


Nature Genetics | 1999

A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation

A. Carrie; L. Jun; Thierry Bienvenu; M.C. Vinet; N. McDonell; P. Couvert; R. Zemni; A. Cardona; G.J.C.M. van Buggenhout; S.G. Frints; B.C.J. Hamel; C. Moraine; Hans-Hilger Ropers; T.M. Strom; Gareth R. Howell; Adam Whittaker; Mark T. Ross; Axel Kahn; J. P. Fryns; Cherif Beldjord; Peter Marynen; Jamel Chelly

We demonstrate here the importance of interleukin signalling pathways in cognitive function and the normal physiology of the CNS. Thorough investigation of an MRX critical region in Xp22.1–21.3 enabled us to identify a new gene expressed in brain that is responsible for a non-specific form of X-linked mental retardation. This gene encodes a 696 amino acid protein that has homology to IL-1 receptor accessory proteins. Non-overlapping deletions and a nonsense mutation in this gene were identified in patients with cognitive impairment only. Its high level of expression in post-natal brain structures involved in the hippocampal memory system suggests a specialized role for this new gene in the physiological processes underlying memory and learning abilities.


American Journal of Human Genetics | 2006

Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome.

Tjitske Kleefstra; Han G. Brunner; Jeanne Amiel; Astrid R. Oudakker; Willy M. Nillesen; Alex Magee; David Geneviève; Valérie Cormier-Daire; Hilde Van Esch; Jean-Pierre Fryns; B.C.J. Hamel; Erik A. Sistermans; Bert B.A. de Vries; Hans van Bokhoven

A clinically recognizable 9q subtelomeric deletion syndrome has recently been established. Common features seen in these patients are severe mental retardation, hypotonia, brachycephaly, flat face with hypertelorism, synophrys, anteverted nares, cupid bow or tented upper lip, everted lower lip, prognathism, macroglossia, conotruncal heart defects, and behavioral problems. The minimal critical region responsible for this 9q subtelomeric deletion (9q-) syndrome has been estimated to be <1 Mb and comprises the euchromatin histone methyl transferase 1 gene (EHMT1). Previous studies suggested that haploinsufficiency for EHMT1 is causative for 9q subtelomeric deletion syndrome. We have performed a comprehensive mutation analysis of the EHMT1 gene in 23 patients with clinical presentations reminiscent of 9q subtelomeric deletion syndrome. This analysis revealed three additional microdeletions that comprise the EHMT1 gene, including one interstitial deletion that reduces the critical region for this syndrome. Most importantly, we identified two de novo mutations--a nonsense mutation and a frameshift mutation--in the EHMT1 gene in patients with a typical 9q- phenotype. These results establish that haploinsufficiency of EHMT1 is causative for 9q subtelomeric deletion syndrome.


Nature Genetics | 2008

Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling

Elen Griffith; Sarah R. Walker; Carol-Anne Martin; Paola Vagnarelli; Tom Stiff; Bertrand Vernay; Nouriya Al Sanna; Anand Saggar; B.C.J. Hamel; William C. Earnshaw; Penny A. Jeggo; Andrew P. Jackson; Mark O'Driscoll

Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)—resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins—also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size.

Collaboration


Dive into the B.C.J. Hamel's collaboration.

Top Co-Authors

Avatar

Jamel Chelly

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Hans van Bokhoven

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Han G. Brunner

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Helger G. Yntema

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Fryns

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tjitske Kleefstra

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Astrid R. Oudakker

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Dominique Smeets

Radboud University Nijmegen Medical Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge