B. C. Jaiprakash
Oil and Natural Gas Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. C. Jaiprakash.
Stratigraphy and Geological Correlation | 2013
R. Nagendra; P. Sathiyamoorthy; S. Pattanayak; A. Nallapa Reddy; B. C. Jaiprakash
The Karai shale Formation of the Uttatur Group is exposed in a bad land area at the western margin of the Cauvery Basin. This shale has been investigated based on foraminiferal fauna and clay minerals. The foraminiferal assemblages obtained contain predominantly calcareous benthic foraminifera, rare planktic and arenaceous foraminifera. The planktic foraminiferal index taxa Planomalina buxtorfi, Rotalipora reicheli, Praeglobotruncana stephani, and Hedbergella portsdownensis suggest the late Albian to middle Turonian age. The benthic assemblage dominated by Lenticulina, Gavelinella, Osangularia and Quadrimorphina, suggests an outer neritic (100–200 m) environment. The clay mineral content dominated by kaolinite-illite-montmorillonite indicates that the Karai shale was formed from weathering of igneous rocks.
Journal of The Geological Society of India | 2016
Gerta Keller; B. C. Jaiprakash; A.N. Reddy
Late Maastrichtian through middle Eocene planktic foraminiferal biostratigraphy and erosion patterns from three Cauvery basin wells are compared with the Krishna-Godavari basin, Madagascar and South Atlantic Site 525A. Maastrichtian sedimentation appears continuous at DSDP site 525A and substantially complete in the Cauvery basin and Madagascar for the interval from ~70.3 to 66.8 Ma (zones CF6-CF3). But the latest Maastrichtian through early Paleocene record is fragmented, except for some Krishna-Godavari and Cauvery basin wells protected from erosion by Deccan traps or graben deposition, respectively. Hiatuses are observed correlative with sea level falls at 66.8, 66.25, 66.10, 65.7, 63.8 and 61.2 Ma with erosion amplified by local tectonic activity including doming and uplift due to Deccan volcanism.Throughout this region the Cretaceous-Paleogene transition (magnetochron C29r-C29n, 66.25-65.50 Ma) is preserved only in deep wells of the Krishna-Godavari basin where Deccan Traps protected intertrappean sediments from erosion. The late Paleocene to middle Eocene marine record was recovered from two Cauvery basin wells with hiatuses correlative with low sea levels at ~49.0-56.5 Ma (zones P4c-E6) and ~53.0-55.3 Ma (zones E1-E4) at the ridge well KALI-H. A nearly complete record was recovered from well AGA, including the PETM event (zones E1-E2), which marks this an excellent reference section for India.Similarity in erosion and sedimentation patterns of the late Maastrichtian to middle Paleocene from India to Madagascar and South Atlantic is mainly attributed to climate changes and sea level falls, regional tectonic activity from the Bay of Bengal to Madagascar, and uplift and doming in the Cauvery and K-G basins as a result of Deccan volcanism. Directly correlative with Deccan volcanism are high stress environments for marine calcifiers, as observed by species dwarfing, reduced diversity and blooms of the disaster opportunist Guembelitria cretacea in magnetochron C30n (zones CF4-CF3) correlative with Deccan phase-1 and Ninetyeast Ridge volcanism, in C29r (zones CF2-CF1) correlative with Deccan phase-2 and in C29n (zone P1b) correlative with Deccan phase-3 marking volcanism as the most important stress factor in the end-Cretaceous mass extinction and delayed evolution of planktic foraminifera.
Arabian Journal of Geosciences | 2014
R. Nagendra; P. Sathiyamoorthy; A. N. Reddy; Harry Gilbert; B. C. Jaiprakash
Grey shale Member of the Dalmiapuram Formation, Ariyalur Group, Cauvery Basin, India was studied for its stratigraphic position, age, and paleobathymetry with a re-look into the lithological relationship and foraminifer assemblages in the deepened limestone mine excavations at M/s Dalmia Cements, Dalmiapuram. Twenty grey shale samples from Kovandankurchchi (pit-4) and Kallakkudi mines yielded diversified calcareous, benthic, and rare index planktic foraminifera. The foraminiferal assemblages suggest a latest Albian age and middle neritic depositional conditions. The abundance of kaolinite and smectite clay minerals relate to warm/humid climate which corroborate with rising relative sea level during grey shale deposition. The grey shale occurs in patches within the marl bedded limestone member which exhibits cyclic deposition of limestone and marl. The limestone mine sections demonstrate that the grey shale forms part of basal marl bedded limestone, directly overlying the coral algal limestone. The present study demonstrates that the grey shale outcrops in Dalmiapuram Formation should be placed stratigraphically as part of marl bedded limestone. The member status for grey shale which is current usage stands discounted.
Journal of The Geological Society of India | 2016
M. H. Basavaraju; B. C. Jaiprakash; L. Chidambaram; M. Ayyadurai
The first exploratory well Arani–A was drilled in the Palar basin to a depth of 2400m and terminated within the granitic basement.This well offered the first ever opportunity to understand biostratigraphy, sedimentation history and depositional environment of the entire sedimentary column based on arenaceous foraminifera, spores, pollen and dinoflagellate cyst assemblages. Previous studies on few scattered outcrops around Sriperumbudur, Chengalpattu and Sathyavedu areas have documented palynofossil assemblage of Neocomian–Aptian age. The present study reveals the presence of middle Jurassic (Bajocian-Callovian) sediments (2360-1725 m) resting on the granitic basement. The sediments are interpreted to have deposited under lacustrine/estuarine conditions with high tides providing occasional marine influence. The middle Jurassic sediments are conformably overlain by late Jurassic (Oxfordian–Tithonian) sediments (1725 - 950 m). The late Jurassic sediments have been inferred to have got deposited under fluctuating near shoremarginal marine conditions. There is a 55m thick boulder bed (950 - 895 m) separating the overlying Valanginian sediments. Early Cretaceous (Valanginian-Early Albian) sediments are developed in the interval from 895-50m. The boulder bed possibly corresponds to the missing Berriasian stage of the earliest Cretaceous representing an unconformity of the order of ~5 Ma across Jurassic-Cretaceous boundary. These sediments are inferred to have deposited under shallow inner neritic conditions. The sediments from 50m to surface consist mainly of lateritic sandstone and alluvium. The sedimentary history of Palar basin began in Bajocian stage of middle Jurassic (170-168 Ma) and ended in early Albian stage of early Cretaceous (113-105 Ma). The late Albian marine transgression which facilitated huge sedimentation in Cauvery and Krishna-Godavari basins has bypassed the Palar basin thus adversely affecting the hydrocarbon potential.
Earth and Planetary Science Letters | 2012
Gerta Keller; Thierry Adatte; P.K Bhowmick; H. Upadhyay; Alok Dave; A.N. Reddy; B. C. Jaiprakash
Journal of The Geological Society of India | 2011
Gerta Keller; P.K Bhowmick; H. Upadhyay; Alok Dave; A.N. Reddy; B. C. Jaiprakash; Thierry Adatte
Marine and Petroleum Geology | 2011
R. Nagendra; B.V. Kamalak Kannan; Gargi Sen; Harry Gilbert; D. Bakkiaraj; A. Nallapa Reddy; B. C. Jaiprakash
Journal of The Geological Society of India | 2007
K. Satyanarayana; A. Nallapa Reddy; B. C. Jaiprakash; L. Chidambaram; Shekhar Srivastava; D. K. Bharktya
Journal of The Geological Society of India | 1994
D. S. N. Raju; B. C. Jaiprakash; C. N. Ravindran; R. Kalyansunder; P. Ramesh
Journal of The Geological Society of India | 2002
R. Nagendra; G. Nagendran; K. Narasimha; B. C. Jaiprakash; A. Nallapa Reddy