B. Carry
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. Carry.
Nature | 2014
Francesca E. DeMeo; B. Carry
Advances in the discovery and characterization of asteroids over the past decade have revealed an unanticipated underlying structure that points to a dramatic early history of the inner Solar System. The asteroids in the main asteroid belt have been discovered to be more compositionally diverse with size and distance from the Sun than had previously been known. This implies substantial mixing through processes such as planetary migration and the subsequent dynamical processes.
Science | 2011
H. Sierks; P. L. Lamy; Cesare Barbieri; D. Koschny; Hans Rickman; R. Rodrigo; Michael F. A'Hearn; F. Angrilli; M. A. Barucci; Jean-Loup Bertaux; I. Bertini; Sebastien Besse; B. Carry; G. Cremonese; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; J. de León; F. Ferri; S. Fornasier; M. Fulle; S. F. Hviid; Robert W. Gaskell; Olivier Groussin; Pedro J. Gutierrez; Wing-Huen Ip; L. Jorda; Mikko Kaasalainen; H. U. Keller
A spacecraft flyby of an asteroid reveals a high-density body that is more like a planetesimal than a rubble pile. Images obtained by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras onboard the Rosetta spacecraft reveal that asteroid 21 Lutetia has a complex geology and one of the highest asteroid densities measured so far, 3.4 ± 0.3 grams per cubic centimeter. The north pole region is covered by a thick layer of regolith, which is seen to flow in major landslides associated with albedo variation. Its geologically complex surface, ancient surface age, and high density suggest that Lutetia is most likely a primordial planetesimal. This contrasts with smaller asteroids visited by previous spacecraft, which are probably shattered bodies, fragments of larger parents, or reaccumulated rubble piles.
Astronomy and Astrophysics | 2008
B. Carry; Christophe Dumas; Marcello Fulchignoni; William Jon Merline; Jerome Berthier; Daniel Hestroffer; Thierry Fusco; Peter Tamblyn
Aims. We study the physical characteristics (shape, dimensions, spin axis direction, albedo maps, mineralogy) of the dwarf-planet Ceres based on high-angular resolution near-infrared observations. Methods. We analyze adaptive optics J/H/K imaging observations of Ceres performed at Keck II Observatory in September 2002 with an equivalent spatial resolution of∼50 km. The spectral behavior of the main geological features present on Ceres is compared with laboratory samples. Results. Ceres’ shape can be described by an oblate spheroid ( a = b = 479.7± 2.3 km, c = 444.4± 2.1 km) with EQJ2000.0 spin vector coordinatesα0 = 288 ◦ ± 5 ◦ andδ0 = +66 ◦ ± 5 ◦ . Ceres sidereal period is measured to be 9.074 10 +0.000 10 −0.000 14 h. We image surface features with diameters in the 50-180 km range and an albedo contrast of∼6% with respect to the average Ceres albedo. The spectral behavior of the brightest regions on Ceres is consistent wit h phyllosilicates and carbonate compounds. Darker isolated regions could be related to the presence of frost.
Nature | 2010
C. Snodgrass; C. Tubiana; Jean-Baptiste Vincent; H. Sierks; S. F. Hviid; Richard Moissl; Hermann Boehnhardt; Cesare Barbieri; D. Koschny; P. L. Lamy; Hans Rickman; R. Rodrigo; B. Carry; S. C. Lowry; Ryan J. M. Laird; Paul R. Weissman; A. Fitzsimmons; S. Marchi
The peculiar object P/2010 A2 was discovered in January 2010 and given a cometary designation because of the presence of a trail of material, although there was no central condensation or coma. The appearance of this object, in an asteroidal orbit (small eccentricity and inclination) in the inner main asteroid belt attracted attention as a potential new member of the recently recognized class of main-belt comets. If confirmed, this new object would expand the range in heliocentric distance over which main-belt comets are found. Here we report observations of P/2010 A2 by the Rosetta spacecraft. We conclude that the trail arose from a single event, rather than a period of cometary activity, in agreement with independent results. The trail is made up of relatively large particles of millimetre to centimetre size that remain close to the parent asteroid. The shape of the trail can be explained by an initial impact ejecting large clumps of debris that disintegrated and dispersed almost immediately. We determine that this was an asteroid collision that occurred around 10 February 2009.
Icarus | 2010
B. Carry; Christophe Dumas; Mikko Kaasalainen; Jerome Berthier; William Jon Merline; Stephane Erard; Al Conrad; Jack D. Drummond; Daniel Hestroffer; Marcello Fulchignoni; Thierry Fusco
We acquired and analyzed adaptive-optics imaging observations of asteroid (2) Pallas from Keck II and the Very Large Telescope taken during four Pallas oppositions between 2003 and 2007, with spatial resolution spanning 32-88 km (image scales 13-20 km/pix). We improve our determination of the size, shape, and pole by a novel method that combines our AO data with 51 visual light-curves spanning 34 years of observations as well as occultation data. The shape model of Pallas derived here reproduces well both the projected shape of Pallas on the sky and light-curve behavior at all the epochs considered. We resolved the pole ambiguity and found the spin-vector coordinates to be within 5 deg. of [long, lat] = [30 deg., -16 deg.] in the ECJ2000.0 reference frame, indicating a high obliquity of ~84 deg., leading to high seasonal contrast. The best triaxial-ellipsoid fit returns radii of a=275 km, b= 258 km, and c= 238 km. From the mass of Pallas determined by gravitational perturbation on other minor bodies [(1.2 +/- 0.3) x 10-10 Solar Masses], we derive a density of 3.4 +/- 0.9 g.cm-3 significantly different from the density of C-type (1) Ceres of 2.2 +/- 0.1 g.cm-3. Considering the spectral similarities of Pallas and Ceres at visible and near-infrared wavelengths, this may point to fundamental differences in the interior composition or structure of these two bodies. We define a planetocentric longitude system for Pallas, following IAU guidelines. We also present the first albedo maps of Pallas covering ~80% of the surface in K-band. These maps reveal features with diameters in the 70-180 km range and an albedo contrast of about 6% with the mean surface albedo.
Astronomy and Astrophysics | 2010
C. Snodgrass; B. Carry; Christophe Dumas; Olivier R. Hainaut
Context. Ragozzine & Brown presented a list of candidate members of the first collisional family to be found among the transNeptunian objects (TNOs), the one associated with (136108) Haumea (2003 EL61). Aims. We aim to identify which of the candidate members of the Haumea collisional family are true members, by searching for water ice on their surfaces. We also attempt to test the theory that the family members are made of almost pure water ice by using optical light-curves to constrain their densities. Methods. We use optical and near-infrared photometry to identify water ice, in particular using the (J − HS ) colour as a sensitive measure of the absorption feature at 1.6 μm. We use the CH4 filter of the new Hawk-I instrument at the VLT as a short H-band (HS ) for this as it is more sensitive to the water ice feature than the usual H filter. Results. We report colours for 22 candidate family members, including NIR colours for 15. We confirm that 2003 SQ317 and 2005 CB79 are family members, bringing the total number of confirmed family members to 10. We reject 8 candidates as having no water ice absorption based on our Hawk-I measurements, and 5 more based on their optical colours. The combination of the large proportion of rejected candidates and time lost to weather prevent us from putting strong constraints on the density of the family members based on the light-curves obtained so far; we can still say that none of the family members (except Haumea) require a large density to explain their light-curve.
The Astronomical Journal | 2011
P. Rousselot; Emmanuel Jehin; Jean Manfroid; Olivier Mousis; Christophe Dumas; B. Carry; U. Marboeuf; J.-M. Zucconi
There are hints that the dwarf planet (1) Ceres may contain a large amount of water ice. Some models and previous observations suggest that ice could be close enough to the surface to create a flux of water outward through the regolith. This work aims to confirm a previous detection of OH emission off the northern limb of Ceres with the International Ultraviolet Explorer (IUE). Such emission would be evidence of water molecules escaping from the dwarf planet. We used the Ultraviolet and Visual Echelle Spectrograph of the Very Large Telescope to obtain spectra off the northern and southern limbs of Ceres at several epochs. These spectra cover the 307-312 nm wavelength range corresponding to the OH (0,0) emission band, which is the brightest band of this radical, well known in the cometary spectra. These new observations, five times more sensitive than those from IUE, did not permit detection of OH around Ceres. We derive an upper limit for the water production of about {approx}7 x 10{sup 25} molecules s{sup -1} and estimate the minimum thickness of the dust surface layer above the water ice layer (if present) to be about 20 m.
Experimental Astronomy | 2014
Olivier Mousis; R. Hueso; J.-P. Beaulieu; Sylvain Bouley; B. Carry; F. Colas; A. Klotz; C. Pellier; J.-M. Petit; P. Rousselot; Mohamad Ali-Dib; W. Beisker; M. Birlan; C. Buil; A. Delsanti; E. Frappa; Heidi B. Hammel; Anny Chantal Levasseur-Regourd; Glenn S. Orton; A. Sánchez-Lavega; A. Santerne; P. Tanga; J. Vaubaillon; B. Zanda; David Baratoux; T. Böhm; V. Boudon; A. Bouquet; L. Buzzi; J. L. Dauvergne
Amateur contributions to professional publications have increased exponentially over the last decades in the field of planetary astronomy. Here we review the different domains of the field in which collaborations between professional and amateur astronomers are effective and regularly lead to scientific publications.We discuss the instruments, detectors, software and methodologies typically used by amateur astronomers to collect the scientific data in the different domains of interest. Amateur contributions to the monitoring of planets and interplanetary matter, characterization of asteroids and comets, as well as the determination of the physical properties of Kuiper Belt Objects and exoplanets are discussed.
Astronomy and Astrophysics | 2010
Jack D. Drummond; A. Conrad; William Jon Merline; B. Carry; Clark R. Chapman; Harold A. Weaver; Peter Tamblyn; Julian C. Christou; Christophe Dumas
We seek the best size estimates of the asteroid (21) Lutetia, the direction of its spin axis, and its bulk density, assuming its shape is well described by a smooth featureless triaxial ellipsoid, and to evaluate the deviations from this assumption. Methods. We derive these quantities from the outlines of the asteroid in 307 images of its resolved apparent disk obtained with adaptive optics (AO) at Keck II and VLT, and combine these with recent mass determinations to estimate a bulk density. Our best triaxial ellipsoid diameters for Lutetia, based on our AO images alone, are a x b x c = 132 x 101 x 93 km, with uncertainties of 4 x 3 x 13 km including estimated systematics, with a rotational pole within 5 deg. of ECJ2000 [long,lat] = [45, -7], or EQJ2000 [RA, DEC] = [44, +9]. The AO model fit itself has internal precisions of 1 x 1 x 8 km, but it is evident, both from this model derived from limited viewing aspects and the radius vector model given in a companion paper, that Lutetia has significant departures from an idealized ellipsoid. In particular, the long axis may be overestimated from the AO images alone by about 10 km. Therefore, we combine the best aspects of the radius vector and ellipsoid model into a hybrid ellipsoid model, as our final result, of 124 +/- 5 x 101 +/- 4 x 93 +/- 13 km that can be used to estimate volumes, sizes, and projected areas. The adopted pole position is within 5 deg. of [long, lat] = [52, -6] or[RA DEC] = [52, +12]. Using two separately determined masses and the volume of our hybrid model, we estimate a density of 3.5 +/- 1.1 or 4.3 +/- 0.8 g cm-3 . From the density evidence alone, we argue that this favors an enstatite-chondrite composition, although other compositions are formally allowed at the extremes (low-porosity CV/CO carbonaceous chondrite or high-porosity metallic). We discuss this in the context of other evidence.Context. Asteroid (21) Lutetia was the target of the ESA Rosetta mission flyby in 2010 July. Aims. We seek the best size estimates of the asteroid, the direction of its spin axis, and its bulk density, assuming its shape is well described by a smooth featureless triaxial ellipsoid. We also aim to evaluate the deviations from this assumption. Methods. We derive these quantities from the outlines of the asteroid in 307 images of its resolved apparent disk obtained with adaptive optics (AO) at Keck II and VLT, and combine these with recent mass determinations to estimate a bulk density. Results. Our best triaxial ellipsoid diameters for Lutetia, based on our AO images alone, are a × b × c = 132 × 101 × 93 km, with uncertainties of 4 × 3 × 13 km including estimated systematics, with a rotational pole within 5 ◦ of ECJ2000 [ λβ ] = [45 ◦ − 7 ◦ ], or EQJ2000 [RA Dec] = [44 ◦ + 9 ◦ ]. The AO model fit itself has internal precisions of 1 × 1 × 8 km, but it is evident both from this model derived from limited viewing aspects and the radius vector model given in a companion paper, that Lutetia significantly departs from an idealized ellipsoid. In particular, the long axis may be overestimated from the AO images alone by about 10 km. Therefore, we combine the best aspects of the radius vector and ellipsoid model into a hybrid ellipsoid model, as our final result, of diameters 124 ± 5 × 101 ± 4 × 93 ± 13 km that can be used to estimate volumes, sizes, and projected areas. The adopted pole position is within
Astronomy and Astrophysics | 2011
B. Carry; Daniel Hestroffer; Francesca E. DeMeo; A. Thirouin; Jerome Berthier; Pedro Lacerda; Bruno Sicardy; A. Doressoundiram; Christophe Dumas; David Farrelly; Thomas Müller
Aims. We seek to constrain the surface composition of the trans-Neptunian object (90482) Orcus and its small satellite Vanth, as well as their mass and density. Methods. We acquired near-infrared spectra (1.4−2.4 μm) of (90482) Orcus and its companion Vanth using the adaptive-optics-fed integral-field spectrograph SINFONI mounted on Yepun/UT4 at the European Southern Observatory Very Large Telescope. We took advantage of a very favorable appulse (separation of only 4 �� ) between Orcus and the UCAC2 29643541 star (mR = 11.6) to use the adaptive optics mode of SINFONI, allowing both components to be spatially resolved and Vanth colors to be extracted independently from Orcus. Results. The spectrum of Orcus we obtain has the highest signal-to-noise ratio to date, and we confirm the presence of H2 Oi ce in crystalline form, together with the presence of an absorption band at 2.2 μm. We set an upper limit of about 2% to the presence of methane, and 5% for ethane. Since the methane alone cannot account for the 2.2 μm band, the presence of ammonia is suggested to the level of a couple of percent. The colors of Vanth are found to be slightly redder than those of Orcus, but the large measurement uncertainties prevent us from drawing any firm conclusions about the origin of the pair (capture or co-formation). Finally, we reset the orbital phase of Vanth around Orcus, and confirm the orbital parameters derived by Brown and collaborators.
Collaboration
Dive into the B. Carry's collaboration.
Institut de mécanique céleste et de calcul des éphémérides
View shared research outputs