B. Coimbra
University of Minho
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. Coimbra.
Molecular Neurodegeneration | 2013
Miguel Carvalho; Filipa Lopes Campos; B. Coimbra; José M. Pêgo; Carla Rodrigues; Rui Lima; Ana João Rodrigues; Nuno Sousa; António J. Salgado
BackgroundParkinson’s disease (PD) is a chronic neurodegenerative condition that is characterized by motor symptoms as a result of dopaminergic degeneration, particularly in the mesostriatal pathway. However, in recent years, a greater number of clinical studies have focused on the emergence of non-motor symptoms in PD patients, as a consequence of damage on the mesolimbic and mesocortical dopaminergic networks, and on their significant impact on the quality of life of PD patients. Herein, we performed a thorough behavioral analysis including motor, emotional and cognitive dimensions, of the unilateral medial forebrain bundle (MFB) 6-hydroxidopamine (6-OHDA)-lesioned model of PD, and further addressed the impact of pharmacological interventions with levodopa and antidepressants on mood dimensions.ResultsBased on apomorphine-induced turning behaviour and degree of dopaminergic degeneration, animals submitted to MFB lesions were subdivided in complete and incomplete lesion groups. Importantly, this division also translated into a different severity of motor and exploratory impairments and depressive-like symptoms; in contrast, no deficits in anxiety-like and cognitive behaviors were found in MFB-lesioned animals. Subsequently, we found that the exploratory and the anhedonic behavioural alterations of MFB-lesioned rats can be partially improved with the administration of both levodopa or the antidepressant bupropion, but not paroxetine.ConclusionsOur results suggest that this model is a relevant tool to study the pathophysiology of motor and non-motor symptoms of PD. In addition, the present data shows that pharmacological interventions modulating dopaminergic transmission are also relevant to revert the non-motor behavioral deficits found in the disease.
Neuroscience & Biobehavioral Reviews | 2016
Carina Soares-Cunha; B. Coimbra; Nuno Sousa; Ana João Rodrigues
The striatum has been involved in complex behaviors such as motor control, learning, decision-making, reward and aversion. The striatum is mainly composed of medium spiny neurons (MSNs), typically divided into those expressing dopamine receptor D1, forming the so-called direct pathway, and those expressing D2 receptor (indirect pathway). For decades it has been proposed that these two populations exhibit opposing control over motor output, and recently, the same dichotomy has been proposed for valenced behaviors. Whereas D1-MSNs mediate reinforcement and reward, D2-MSNs have been associated with punishment and aversion. In this review we will discuss pharmacological, genetic and optogenetic studies that indicate that there is still controversy to what concerns the role of striatal D1- and D2-MSNs in this type of behaviors, highlighting the need to reconsider the early view that they mediate solely opposing aspects of valenced behaviour.
Nature Communications | 2016
Carina Soares-Cunha; B. Coimbra; Ana David-Pereira; S. Borges; Luísa Pinto; Patrício Costa; Nuno Sousa; Ana João Rodrigues
Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.
Neuropsychopharmacology | 2013
S. Borges; B. Coimbra; Carina Soares-Cunha; José M. Pêgo; Nuno Sousa; Ana João Rodrigues
Prenatal stress or exposure to elevated levels of glucocorticoids (GCs) can impair specific neurobehavioral circuits leading to alterations in emotional processes later in life. In turn, emotional deficits may interfere with the quality and degree of social interaction. Here, by using a comprehensive behavioral approach in combination with the measurement of ultrasonic vocalizations, we show that in utero GC (iuGC)-exposed animals present increased immobility in the forced swimming test, pronounced anhedonic behavior (both anticipatory and consummatory), and an impairment in social interaction at different life stages. Importantly, we also found that social behavioral expression is highly dependent on the affective status of the partner. A profound reduction in mesolimbic dopaminergic transmission was found in iuGC animals, suggesting a key role for dopamine (DA) in the etiology of the observed behavioral deficits. Confirming this idea, we present evidence that a simple pharmacological approach—acute L-3,4-dihydroxyphenylacetic acid (L-DOPA) oral administration, is able to normalize DA levels in iuGC animals, with a concomitant amelioration of several dimensions of the emotional and social behaviors. Interestingly, L-DOPA effects in control individuals were not so straightforward; suggesting that both hypo- and hyperdopaminergia are detrimental in the context of such complex behaviors.
Translational Psychiatry | 2014
Carina Soares-Cunha; B. Coimbra; S. Borges; Miguel Carvalho; A.J. Rodrigues; Nuno Sousa
Exposure to elevated levels of glucocorticoids (GCs) during neurodevelopment has been identified as a triggering factor for the development of reward-associated disorders in adulthood. Disturbances in the neural networks responsible for the complex processes that assign value to rewards and associated stimuli are critical for disorders such as depression, obsessive–compulsive disorders, obesity and addiction. Essential in the understanding on how cues influence behavior is the Pavlovian–instrumental transfer (PIT), a phenomenon that refers to the capacity of a Pavlovian stimulus that predicts a reward to elicit instrumental responses for that same reward. Here, we demonstrate that in utero exposure to GCs (iuGC) impairs both general and selective versions of the PIT paradigm, suggestive of deficits in motivational drive. The iuGC animals presented impaired neuronal activation pattern upon PIT performance in cortical and limbic regions, as well as morphometric changes and reduced levels of dopamine in prefrontal and orbitofrontal cortices, key regions involved in the integration of Pavlovian and instrumental stimuli. Normalization of dopamine levels rescued this behavior, a process that relied on D2/D3, but not D1, dopamine receptor activation. In summary, iuGC exposure programs the mesocorticolimbic dopaminergic circuitry, leading to a reduction in the attribution of the incentive salience to cues, in a dopamine-D2/D3-dependent manner. Ultimately, these results are important to understand how GCs bias incentive processes, a fact that is particularly relevant for disorders where differential attribution of incentive salience is critical.
Frontiers in Endocrinology | 2013
S. Borges; B. Coimbra; Carina Soares-Cunha; Ana Paula Ventura-Silva; Luísa Pinto; Miguel Carvalho; J. M. Pego; Ana João Rodrigues; Nuno Sousa
Stress perception, response, adaptation, and coping strategies are individually distinct, and the sequel of stress and/or glucocorticoids (GCs) is also distinct between subjects. In the last years, it has become clear that early life stress is a powerful modulator of neuroendocrine stress-responsive circuits, programing intrinsic susceptibility to stress, and potentiating the appearance of stress-related disorders such as depression, anxiety, and addiction. Herein we were interested in understanding how early life experiences reset the normal processing of negative stimuli, leading to emotional dysfunction. Animals prenatally exposed to GCs (in utero glucocorticoid exposure, iuGC) present hyperanxiety, increased fear behavior, and hyper-reactivity to negative stimuli. In parallel, we found a remarkable increase in the number of aversive 22 kHz ultrasonic vocalizations in response to an aversive cue. Considering the suggested role of the mesopontine tegmentum cholinergic pathway, arising from the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT), in the initiation of 22 kHz vocalizations and hypothetically in the control of emotional arousal and tone, we decided to evaluate the condition of this circuit in iuGC animals. Notably, in a basal situation, iuGC animals present increased choline acetyltransferase (ChAT) expression in the LDT and PPT, but not in other cholinergic nuclei, namely in the nucleus basalis of Meynert. In addition, and in accordance with the amplified response to an adverse stimulus of iuGC animals, we found marked changes in the cholinergic activation pattern of LDT and PPT regions. Altogether, our results suggest a specific cholinergic pathway programing by prenatal GC, and hint that this may be of relevance in setting individual stress vulnerability threshold.
Psychoneuroendocrinology | 2018
Paula Mustonen; Linnea Karlsson; Noora M. Scheinin; Susanna Kortesluoma; B. Coimbra; Ana João Rodrigues; Hasse Karlsson
Prenatal environment reportedly affects the programming of developmental trajectories in offspring and the modification of risks for later morbidity. Among the increasingly studied prenatal exposures are maternal psychological distress (PD) and altered maternal hypothalamus-pituitary-adrenal (HPA) axis functioning. Both prenatal PD and maternal short-term cortisol concentrations as markers for HPA axis activity have been linked to adverse child outcomes and it has been assumed that maternal PD affects the offspring partially via altered cortisol secretion patterns. Yet, the existing literature on the interrelations between these two measures is conflicting. The assessment of cortisol levels by using hair cortisol concentration (HCC) has gained interest, as it offers a way to assess long-term cortisol levels with a single non-invasive sampling. According to our review, 6 studies assessing the associations between maternal HCC during pregnancy and various types of maternal PD have been published so far. Measures of prenatal PD range from maternal symptoms of depression or anxiety to stress related to persons life situation or pregnancy. The aim of this systematic review is to critically evaluate the potential of HCC as a biomarker for maternal PD during pregnancy. We conclude that HCC appears to be inconsistently associated with self-reported symptoms of prenatal PD, especially in the range of mild to moderate symptom levels. Self-reports on PD usually cover short time periods and they seem to depict partly different phenomena than HCC. Thus, methodological aspects are in a key role in future studies evaluating the interconnections across different types of prenatal PD and maternal HPA axis functioning. Further, studies including repetitive measurements of both HCC and PD during the prenatal period are needed, as timing of the assessments is one important source of variation among current studies. The significance of prenatal HCC in the context of offspring outcomes needs to be further investigated.
eNeuro | 2018
Carina Soares-Cunha; B. Coimbra; Ana Verónica Domingues; Nivaldo Vasconcelos; Nuno Sousa; Ana João Rodrigues
Abstract The nucleus accumbens (NAc) plays a central role in reinforcement and motivation. Around 95% of the NAc neurons are medium spiny neurons (MSNs), divided into those expressing dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R). Optogenetic activation of D2-MSNs increased motivation, whereas inhibition of these neurons produced the opposite effect. Yet, it is still unclear how activation of D2-MSNs affects other local neurons/interneurons or input terminals and how this contributes for motivation enhancement. To answer this question, in this work we combined optogenetic modulation of D2-MSNs with in loco pharmacological delivery of specific neurotransmitter antagonists in rats. First, we showed that optogenetic activation of D2-MSNs increases motivation in a progressive ratio (PR) task. We demonstrated that this behavioral effect relies on cholinergic-dependent modulation of dopaminergic signalling of ventral tegmental area (VTA) terminals, which requires D1R and D2R signalling in the NAc. D2-MSN optogenetic activation decreased ventral pallidum (VP) activity, reducing the inhibitory tone to VTA, leading to increased dopaminergic activity. Importantly, optogenetic activation of D2-MSN terminals in the VP was sufficient to recapitulate the motivation enhancement. In summary, our data suggests that optogenetic stimulation of NAc D2-MSNs indirectly modulates VTA dopaminergic activity, contributing for increased motivation. Moreover, both types of dopamine receptors signalling in the NAc are required in order to produce the positive behavioral effects.
bioRxiv | 2018
A. Fontenele; N. A. P. de Vasconcelos; T. Feliciano; L. Aguiar; Carina Soares-Cunha; B. Coimbra; L. Dalla Porta; Sidarta Ribeiro; Ana João Rodrigues; Nuno Sousa; P. V. Carelli; Mauro Copelli
Since the first measurements of neuronal avalanches [1], the critical brain hypothesis has gained traction [2]. However, if the brain is critical, what is the phase transition? For several decades it has been known that the cerebral cortex operates in a diversity of regimes [3], ranging from highly synchronous states (e.g. slow wave sleep [4], with higher spiking variability) to desynchronized states (e.g. alert waking [5], with lower spiking variability). Here, using independent signatures of criticality, we show that a phase transition occurs in an intermediate value of spiking variability. The critical exponents point to a universality class different from mean-field directed percolation (MF-DP). Importantly, as the cortex hovers around this critical point [6], it follows a linear relation between the avalanche exponents that encompasses previous experimental results from different setups [7, 8] and is reproduced by a model.
Frontiers in Behavioral Neuroscience | 2018
Carina Soares-Cunha; B. Coimbra; S. Borges; Ana Verónica Domingues; Deolinda Silva; Nuno Sousa; Ana João Rodrigues
Stress or high levels of glucocorticoids (GCs) during developmental periods is known to induce persistent effects in the neuroendocrine circuits that control stress response, which may underlie individuals’ increased risk for developing neuropsychiatric conditions later in life, such as anxiety or depression. We developed a rat model (Wistar han) of mild exposure to unpredictable prenatal stress (PS), which consists in a 4-h stressor administered three times per week on a random basis; stressors include strobe lights, noise and restrain. Pregnant dams subjected to this protocol present disrupted circadian corticosterone secretion and increased corticosterone secretion upon acute stress exposure. Regarding progeny, both young adult (2 months old) male and female rats present increased levels of circulating corticosterone and hyperactivity of the hypothalamus-pituitary-adrenal axis to acute stress exposure. Both sexes present anxious- and depressive-like behaviors, shown by the decreased time spent in the open arms of the elevated plus maze (EPM) and in the light side of the light-dark box (LDB), and by increased immobility time in the forced swim test, respectively. Interestingly, these results were accompanied by structural modifications of the bed nucleus of stria terminalis (BNST) and hippocampus, as well as decreased norepinephrine and dopamine levels in the BNST, and serotonin levels in the hippocampus. In summary, we characterize a new model of mild PS, and show that stressful events during pregnancy can lead to long-lasting structural and neurochemical effects in the offspring, which affect behavior in adulthood.