B. D. Indu
Indian Institutes of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. D. Indu.
AIP Advances | 2013
Vinod Ashokan; B. D. Indu
Using the versatile double time thermodynamic Greens function approach based on many body theory the renormalized frequencies, phonon energy line widths, shifts and phonon density of states (PDOS) are investigated via a newly formulated Hamiltonian (does not include BCS type Hamiltonian) that includes the effects of electron-phonon, anharmonicities and that of isotopic impurities. The automatic appearance of pairons, temperature, impurity and electron-phonon coupling of renormalized frequencies, widths, shifts and PDOS emerges as a characteristic feature of present theory. The numerical investigations on PDOS for the YBa 2 Cu 3 O 7 − δ crystal predicts several new feature of high temperature superconductors (HTS) and agreements with experimental observations.
Modern Physics Letters B | 2016
Hempal Singh; Anu Singh; B. D. Indu
The Born–Mayer–Huggins potential which has been found the best suitable potential to study the YBa2Cu3O7−δ type high temperature superconductors is revisited in a new framework. A deeper insight in it reveals that the Born–Mayer parameters for different interactions in high temperature superconductor are not simple quantities but several thermodynamic and spatial functions enter the problem. Based on the new theory, the expressions for pressure, bulk modulus and Born–Mayer parameters have been derived and it is established that these quantities depend upon Gruneisen parameter which is the measure of the strength of anharmonic effects in high temperature superconductors. This theory has been applied to a specific model YBa2Cu3O7−δ crystal for the purpose of numerical estimates to justify the new results.
Modern Physics Letters B | 2011
Vinod Ashokan; B. D. Indu
An ab initio formulation of relaxation times of various contributing processes have been observed with newer understanding in terms of electron and phonon line widths. This is dealt with the help of double time temperature-dependent Greens function via a non-perturbative approach using a crystal Hamiltonian which comprises of the effects of electrons, phonons, impurities, anharmonicities and interactions thereof. The frequency line widths is observed as an extremely sensitive quantity in the transport phenomena of high temperature superconductors (HTS) as a collection of a large number of scattering processes, namely: boundary scattering, impurity scattering, multi-phonon scattering, interference scattering, electron–phonon processes and resonance scattering. The behavior of electrons and phonons is then investigated to describe the thermal conductivity of a variety of HTS samples specially in the vicinity of transition temperature to successfully explain the spectacular dip region of thermal conductivity curve which was lacking in explanation earlier with a sound physical justification.
Modern Physics Letters B | 2016
Vinod Ashokan; B. D. Indu; A. Kr. Dimri
In this work, thermal conductivity of high temperature superconductors (HTS) has been analyzed on the basis of modified Callaway model. In the new formulation, the relaxation times of various contributing processes have been observed in newer perspectives of electron and phonon line widths. To obtain line widths, the quantum dynamics of electron and phonon is carried out by using double time thermodynamic Green’s functions method via a general Hamiltonian. The outcome of this heuristic approach is utilized to successfully explain the spectacular behavior of thermal conductivity of HTS, and particularly in the vicinity of transition temperature.
AIP Advances | 2016
Anu Singh; Hempal Singh; B. D. Indu
The contributions due to the point defects or disorder and anharmonicities which play deterministic role in the understanding of electronic heat capacity (EHC) of high temperature superconductors (HTS) have been investigated via electron density of states (EDOS) approach on the basis of quantum dynamical many body theory. The evaluation of EDOS has been carried out with the help of most versatile method of double time temperature dependent electron Green’s functions (GF) via a Hamiltonian (non BCS type) which includes the effects of electrons, phonons, defects, anharmonicity, and electron-phonon interactions which enables to account the effects of cubic anharmonicity besides with both the force constant changes and mass difference caused by the impurities in developing the results for EDOS and EHC. The new results reveal some striking features of EHC of HTS.
Modern Physics Letters B | 2015
Vinod Ashokan; B. D. Indu
In the present work, the phonon density of states (PDOS) for La2−xSrxCuO4 crystal is investigated by using the double time thermodynamic Green’s function method via a non-perturbative approach. A newly formulated Hamiltonian is considered for the lattice dynamics of phonon, which includes the effects of electron–phonon interactions, lattice anharmonicities and the interacting isotopic impurities. The automated emergence of pairons and dx2−y2 wave pairing mechanism appears as a salient features of the theory. The PDOS is found to be dependent on temperature, impurity concentration, electron–phonon coupling coefficient and renormalized frequencies, and the numerical investigations on PDOS exhibits fairly good agreements with the inelastic neutron scattering experimental observations.
International Journal of Modern Physics B | 2011
M. Ataullah Ansari; Vinod Ashokan; B. D. Indu
The lattice thermal conductivity of InSb and CdS has been analyzed on the basis of the most acquiescent Callaway model in the temperature range 2–300.779 K and 2.296–283.565 K. To reinvigorate the effects of phonon anharmonicities, more rigorous expressions for the phonon–phonon interactions, resonance, impurity and interference scattering relaxation times have been introduced to theoretically justify the experimentally observed results. A fairly good agreement between theory and experiments has been presented.
Archive | 2018
Anu Singh; B. D. Indu
The effects of defects and anharmonicities on the electron density of states (EDOS) have been studied in high-temperature superconductors (HTS) adopting the many body quantum dynamical theory of electron Green’s functions via a generalized Hamiltonian that includes the effects of electron-phonon interactions, anharmonicities and point impurities. The automatic emergence of pairons and temperature dependence of EDOS are appear as special feature of the theory. The results thus obtained and their numerical analysis for YBa2Cu3O7-δ superconductors clearly demonstrate that the presence of defects, anharmonicities and electron-phonon interactions modifies the behavior of EDOS over a wide range of temperature.The effects of defects and anharmonicities on the electron density of states (EDOS) have been studied in high-temperature superconductors (HTS) adopting the many body quantum dynamical theory of electron Green’s functions via a generalized Hamiltonian that includes the effects of electron-phonon interactions, anharmonicities and point impurities. The automatic emergence of pairons and temperature dependence of EDOS are appear as special feature of the theory. The results thus obtained and their numerical analysis for YBa2Cu3O7-δ superconductors clearly demonstrate that the presence of defects, anharmonicities and electron-phonon interactions modifies the behavior of EDOS over a wide range of temperature.
Journal: Materials | 2013
Anu Singh; Hempal Singh; Vinod Ashokan; B. D. Indu
The defect-induced anharmonic phonon-electron problem in high-temperature superconductors has been investigated with the help of double time thermodynamic electron and phonon Green’s function theory using a comprehensive Hamiltonian which includes the contribution due to unperturbed electrons and phonons, anharmonic phonons, impurities, and interactions of electrons and phonons. This formulation enables one to resolve the problem of electronic heat transport and equilibrium phenomenon in high-temperature superconductors in an amicable way. The problem of electronic heat capacity and electron-phonon problem has been taken up with special reference to the anharmonicity, defect concentration electron-phonon coupling, and temperature dependence.
Modern Physics Letters B | 2013
Vinod Ashokan; B. D. Indu