Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B de Crombrugghe is active.

Publication


Featured researches published by B de Crombrugghe.


Molecular and Cellular Biology | 1997

SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene.

Véronique Lefebvre; Wei Chien Huang; V R Harley; P N Goodfellow; B de Crombrugghe

The identification of mutations in the SRY-related SOX9 gene in patients with campomelic dysplasia, a severe skeletal malformation syndrome, and the abundant expression of Sox9 in mouse chondroprogenitor cells and fully differentiated chondrocytes during embryonic development have suggested the hypothesis that SOX9 might play a role in chondrogenesis. Our previous experiments with the gene (Col2a1) for collagen II, an early and abundant marker of chondrocyte differentiation, identified a minimal DNA element in intron 1 which directs chondrocyte-specific expression in transgenic mice. This element is also a strong chondrocyte-specific enhancer in transient transfection experiments. We show here that Col2a1 expression is closely correlated with high levels of SOX9 RNA and protein in chondrocytes. Our experiments indicate that the minimal Col2a1 enhancer is a direct target for Sox9. Indeed, SOX9 binds to a sequence of the minimal Col2a1 enhancer that is essential for activity in chondrocytes, and SOX9 acts as a potent activator of this enhancer in cotransfection experiments in nonchondrocytic cells. Mutations in the enhancer that prevent binding of SOX9 abolish enhancer activity in chondrocytes and suppress enhancer activation by SOX9 in nonchondrocytic cells. Other SOX family members are ineffective. Expression of a truncated SOX9 protein lacking the transactivation domain but retaining DNA-binding activity interferes with enhancer activation by full-length SOX9 in fibroblasts and inhibits enhancer activity in chondrocytes. Our results strongly suggest a model whereby SOX9 is involved in the control of the cell-specific activation of COL2A1 in chondrocytes, an essential component of the differentiation program of these cells. We speculate that in campomelic dysplasia a decrease in SOX9 activity would inhibit production of collagen II, and eventually other cartilage matrix proteins, leading to major skeletal anomalies.


Journal of Biological Chemistry | 1998

Three high mobility group-like sequences within a 48-base pair enhancer of the Col2a1 gene are required for cartilage-specific expression in vivo.

Guang Zhou; Véronique Lefebvre; Zhaoping Zhang; Heidi Eberspaecher; B de Crombrugghe

To understand the molecular mechanisms by which mesenchymal cells differentiate into chondrocytes, we have used the gene for an early and abundant marker of chondrocytes, the mouse pro-α1(II) collagen gene (Col2a1), to delineate a minimal sequence needed for chondrocyte-specific expression and to identify the DNA-binding proteins that mediate its activity. We show here that a 48-base pair (bp) Col2a1 intron 1 sequence specifically targets the activity of a heterologous promoter to chondrocytes in transgenic mice. Mutagenesis studies of this 48-bp element identified three separate sites (sites 1–3) that were essential for its chondrocyte-specific enhancer activity in both transgenic mice and transient transfections. Mutations in sites 1 and 2 also severely inhibited the chondrocyte-specific enhancer activity of a 468-bpCol2a1 intron 1 sequence in vivo. SOX9, an SRY-related high mobility group (HMG) domain transcription factor, was previously shown to bind site 3, to bend the 48-bp DNA at this site, and to strongly activate this 48-bp enhancer as well as largerCol2a1 enhancer elements. All three sites correspond to imperfect binding sites for HMG domain proteins and appear to be involved in the formation of a large chondrocyte-specific complex between the 48-bp element, Sox9, and other protein(s). Indeed, mutations in each of the three HMG-like sites of the 48-bp element, which abolished chondrocyte-specific expression of reporter genes in transgenic mice and in transiently transfected cells, inhibited formation of this complex. Overall our results suggest a model whereby both Sox9 and these other proteins bind to several HMG-like sites in the Col2a1 gene to cooperatively control its expression in cartilage.


Molecular and Cellular Biology | 1996

Three classes of mutations in the A subunit of the CCAAT-binding factor CBF delineate functional domains involved in the three-step assembly of the CBF-DNA complex.

Satrajit Sinha; In-San Kim; K.-Y. Sohn; B de Crombrugghe; Sankar N. Maity

The mammalian CCAAT-binding factor CBF (also called NF-Y or CP1) consists of three subunits, CBF-A, CBF-B, and CBF-C, all of which are required for DNA binding and present in the CBF-DNA complex. In this study we first established the stoichiometries of the CBF subunits, both in the CBF molecule and in the CBF-DNA complex, and showed that one molecule of each subunit is present in the complex. To begin to understand the interactions between the CBF subunits and DNA, we performed a mutational analysis of the CBF-A subunit. This analysis identified three classes of mutations in the segment of CBF-A that is conserved in Saccharomyces cerevisiae and mammals. Analysis of the first class of mutants revealed that a major part of the conserved segment was essential for interactions with CBF-C to form a heterodimeric CBF-A/CBF-C complex. The second class of mutants identified a segment of CBF-A that is necessary for interactions between the CBF-A/CBF-C heterodimer and CBF-B to form a CBF heterotrimer. The third class defined a domain of CBF-A involved in binding the CBF heterotrimer to DNA. The second and third classes of mutants acted as dominant negative mutants inhibiting the formation of a complex between the wild-type CBF subunits and DNA. The segment of CBF-A necessary for DNA binding showed sequence homology to a segment of CBF-C. Interestingly, these sequences in CBF-A and CBF-C were also homologous to the sequences in the histone-fold motifs of histones H2B and H2A, respectively, and to the archaebacterial histone-like protein HMf-2. We discuss the functional domains of CBF-A and the properties of CBF in light of these sequence homologies and propose that an ancient histone-like motif in two CBF subunits controls the formation of a heterodimer between these subunits and the assembly of a sequence-specific DNA-protein complex.


Molecular and Cellular Biology | 1996

Determination of functional domains in the C subunit of the CCAAT- binding factor (CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both the CBF-A and CBF-C subunits to form a heterotrimeric CBF molecule

I S Kim; Satrajit Sinha; B de Crombrugghe; Sankar N. Maity

The mammalian CCAAT-binding factor (CBF; also called NF-Y and CP1) is a heterotrimeric protein consisting of three subunits, CBF-A, CBF-B, and CBF-C, all of which are required for DNA binding and all of which are present in the CBF-DNA complex. In this study using cross-linking and immunoprecipitation methods, we first established that CBF-B interacts simultaneously with both subunits of the CBF-A-CBF-C heterodimer to form a heterotrimeric CBF molecule. We then performed a mutational analysis of CBF-C to define functional interactions with the other two CBF subunits and with DNA using several in vitro assays and an in vivo yeast two-hybrid system. Our experiments established that the evolutionarily conserved segment of CBF-C, which shows similarities with the histone-fold motif of histone H2A, was necessary for formation of the CBF-DNA complex. The domain of CBF-C which interacts with CBF-A included a large portion of this segment, one that corresponds to the segment of the histone-fold motif in H2A used for interaction with H2B. Two classes of interactions involved in formation of the CBF-A-CBF-C heterodimer were detected; one class, provided by residues in the middle of the interaction domain, was needed for formation of the CBF-A-CBF-C heterodimer. The other, provided by sequences flanking those of the first class was needed for stabilization of the heterodimer. Two separate domains were identified in the conserved segment of CBF-C for interaction with CBF-B; these were located on each side of the CBF-A interaction domain. Since our previous experiments identified a single CBF-B interaction domain in the histone-fold motif of CBF-A, we propose that a tridentate interaction domain in the CBF-A-CBF-C heterodimer interacts with the 21-amino-acid-long subunit interaction domain of CBF-B. Together with our previous mutational analysis of CBF-A (S. Sinha, I.-S. Kim, K.-Y. Sohn, B. de Crombrugghe, and S. N. Maity, Mol. Cell. Biol. 16:328-337, 1996), this study demonstrates that the histone fold-motifs of CBF-A and CBF-C interact with each other to form the CBF-A-CBF-C heterodimer and generate a hybrid surface which then interacts with CBF-B to form the heterotrimeric CBF molecule.


Molecular and Cellular Biology | 1993

TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation.

Guang-Quan Zhao; Qi Zhao; Xin Zhou; M.-G. Mattei; B de Crombrugghe

We have identified a new basic helix-loop-helix (BHLH) DNA-binding protein, designated TFEC, which is closely related to TFE3 and TFEB. The basic domain of TFEC is identical to the basic DNA-binding domain of TFE3 and TFEB, whereas the helix-loop-helix motif of TFEC shows 88 and 85% identity with the same domains in TFE3 and TFEB, respectively. Like the other two proteins, TFEC contains a leucine zipper motif, which has a lower degree of sequence identity with homologous domains in TFE3 and TFEB than does the BHLH segment. Little sequence identity exists outside these motifs. Unlike the two other proteins, TFEC does not contain an acidic domain, which for TFE3 mediates the ability to activate transcription. Like the in vitro translation product of TFE3, the in vitro-translated TFEC binds to the mu E3 DNA sequence of the immunoglobulin heavy-chain gene enhancer. In addition, the product of cotranslation of TFEC RNA and TFE3 RNA forms a heteromeric protein-DNA complex with mu E3 DNA. In contrast to TFE3, TFEC is unable to transactivate a reporter gene linked to a promoter containing tandem copies of the immunoglobulin mu E3 enhancer motif. Cotransfection of TFEC DNA and TFE3 DNA strongly inhibits the transactivation caused by TFE3. TFEC RNA is found in many tissues of adult rats, but the relative concentrations of TFEC and TFE3 RNAs vary considerably in these different tissues. No TFEC RNA was detectable in several cell lines, including fibroblasts, myoblasts, chondrosarcoma cells, and myeloma cells, indicating that TFEC is not ubiquitously expressed.


Matrix Biology | 1995

Coordinate patterns of expression of type I and III collagens during mouse development

Karen Niederreither; R. D'Souza; Marjo Metsäranta; Heidi Eberspaecher; P.D. Toman; Eero Vuorio; B de Crombrugghe

The extracellular proteins types I and III collagen are abundantly expressed during development. Here, the patterns of the pro alpha 1(I), pro alpha 2(I), and pro alpha 1(III) collagen mRNAs are systematically examined from 7.5 to 17.5 days of development (E7.5 to E17.5) in the mouse using in situ hybridization with specific riboprobes. Coordinated expression of pro alpha 1(I) and pro alpha 2(I) collagen mRNA was found throughout development in all regions examined. Widespread type I collagen expression starting at E8.5 occurred in embryonic mesoderm, sclerotomes, dermatomes, and in the forming connective tissues. After E14.5, regions of ossification showed highest levels of type I collagen expression. Pro alpha 1(III) collagen expression was specific to and coordinated with patterns of type I collagen expression in many fibroblast-containing tissues. No expression of type III collagen occurred in osteoblasts. This comprehensive study of the transcripts of abundantly expressed structural proteins should provide a basis for comparison of other key extracellular matrix molecules and serve as a reference for studies on the patterns of activities of various promoter/enhancer-reporter gene constructions of type I and III collagen genes in transgenic mice.


Bone | 2000

Parathyroid hormone and prostaglandin E2 preferentially increase luciferase levels in bone of mice harboring a luciferase transgene controlled by elements of the pro-α1(I) collagen promoter

E.E Opas; Michael A. Gentile; J.A. Rossert; B de Crombrugghe; Gideon A. Rodan; A Schmidt

Abstract Type 1 collagen is the major extracellular protein in bone, tendons, ligaments, and skin. DNA elements of the mouse pro-α1 (I) collagen promoter were shown to drive the bone-selective expression of a luciferase transgene. We examined whether this expression can be used to evaluate the effect of anabolic agents on bone formation in vivo. Treatment of either intact males, intact females, or ovariectomized (ovx) mice with 80 μg/kg/day of human parathyroid hormone (hPTH), for 5 to 11 days increased luciferase levels in tibiae by two- to threefold compared with vehicle-treated mice. The increases were tissue specific, as no changes in skin luciferase expression were observed. Treatment with prostaglandin E 2 , a potent bone anabolic agent, for 11 days also increased expression of the transgene in bone, but not in skin. Treatment with dihydrotestosterone (DHT) for 11 days increased luciferase activity in skin, but not in bone. Histomorphometric analysis revealed that 28-day treatment with PTH increased bone formation; 60-day treatment of OVX mice with DHT did not. These findings show a correlation between bone formation and the expression of a transgene driven by DNA elements of the mouse pro-α1 (I) collagen promoter, suggesting that this expression can be used as an indicator and provide a faster readout for the ability of agents to stimulate bone formation in this mouse strain.


Journal of Dental Research | 2015

Chondrocytes Directly Transform into Bone Cells in Mandibular Condyle Growth

Y. Jing; Xin Zhou; X. Han; Junjun Jing; K. von der Mark; Jianbo Wang; B de Crombrugghe; Robert J. Hinton; J.Q. Feng

For decades, it has been widely accepted that hypertrophic chondrocytes undergo apoptosis prior to endochondral bone formation. However, very recent studies in long bone suggest that chondrocytes can directly transform into bone cells. Our initial in vivo characterization of condylar hypertrophic chondrocytes revealed modest numbers of apoptotic cells but high levels of antiapoptotic Bcl-2 expression, some dividing cells, and clear alkaline phosphatase activity (early bone marker). Ex vivo culture of newborn condylar cartilage on a chick chorioallantoic membrane showed that after 5 d the cells on the periphery of the explants had begun to express Col1 (bone marker). The cartilage-specific cell lineage–tracing approach in triple mice containing Rosa 26tdTomato (tracing marker), 2.3 Col1GFP (bone cell marker), and aggrecan CreERT2 (onetime tamoxifen induced) or Col10-Cre (activated from E14.5 throughout adult stage) demonstrated the direct transformation of chondrocytes into bone cells in vivo. This transformation was initiated at the inferior portion of the condylar cartilage, in contrast to the initial ossification site in long bone, which is in the center. Quantitative data from the Col10-Cre compound mice showed that hypertrophic chondrocytes contributed to ~80% of bone cells in subchondral bone, ~70% in a somewhat more inferior region, and ~40% in the most inferior part of the condylar neck (n = 4, P < 0.01 for differences among regions). This multipronged approach clearly demonstrates that a majority of chondrocytes in the fibrocartilaginous condylar cartilage, similar to hyaline cartilage in long bones, directly transform into bone cells during endochondral bone formation. Moreover, ossification is initiated from the inferior portion of mandibular condylar cartilage with expansion in one direction.


Annals of the Rheumatic Diseases | 1991

Transcriptional control mechanisms for the expression of type I collagen genes.

B de Crombrugghe; T Vuorio; Gerard Karsenty; Sankar N. Maity; E C Rutheshouser; H. Goldberg

Fibrosis is a hallmark symptom in a number of human diseases, including scleroderma, lung fibrosis, liver cirrhosis, atherosclerosis, osteoarthritis, and keloids. The most prominent biochemical manifestation of fibrotic lesions is an abnormal accumulation of extracellular matrix components, including type I and III collagen in mesenchymal tissues. This abnormal accumulation often results in severe malfunction of the affected tissues. It is important to note that the formation of fibrous tissue can also be a normal physiological response as it occurs, for instance, in wound healing. This suggests that in fibrotic diseases regulation of this normal physiological process is altered. A study of the mechanisms regulating the normal response should help in understanding the abnormal control of this process.


Journal of Dental Research | 2015

Osterix Regulates Tooth Root Formation in a Site-specific Manner

Tak-Heun Kim; Cheol-Hyeon Bae; J.C. Lee; Jung-Eun Kim; X. Yang; B de Crombrugghe; Eui-Sic Cho

Bone and dentin share similar biochemical compositions and physiological properties. Dentin, a major tooth component, is formed by odontoblasts; in contrast, bone is produced by osteoblasts. Osterix (Osx), a zinc finger-containing transcription factor, has been identified as an essential regulator of osteoblast differentiation and bone formation. However, it has been difficult to establish whether Osx functions in odontoblast differentiation and dentin formation. To understand the role of Osx in dentin formation, we analyzed mice in which Osx was subjected to tissue-specific ablation under the control of either the Col1a1 or the OC promoter. Two independent Osx conditional knockout mice exhibited similar molar abnormalities. Although no phenotype was found in the crowns of these teeth, both mutant lines exhibited short molar roots due to impaired root elongation. Furthermore, the interradicular dentin in these mice showed severe hypoplastic features, which were likely caused by disruptions in odontoblast differentiation and dentin formation. These phenotypes were closely related to the temporospatial expression pattern of Osx during tooth development. These findings indicate that Osx is required for root formation by regulating odontoblast differentiation, maturation, and root elongation. Cumulatively, our data strongly indicate that Osx is a site-specific regulator in tooth root formation.

Collaboration


Dive into the B de Crombrugghe's collaboration.

Top Co-Authors

Avatar

Ira Pastan

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Sankar N. Maity

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Heidi Eberspaecher

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Silvio Garofalo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark E. Sobel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Guang Zhou

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

J.A. Rossert

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

S L Adams

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge