B. E. Bailey
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. E. Bailey.
Planetary and Space Science | 2006
C. Schröder; B. E. Bailey; G. Klingelhöfer; Hubert Staudigel
Abstract The element Fe and Fe-bearing minerals occur ubiquitously throughout the field of astrobiology. Cycling between the various oxidation states of Fe provides a source of energy available for life. Banded iron formations may record the rise of oxygenic photosynthesis. The distribution of Fe between Fe-bearing minerals and its oxidation states can help to characterize and understand ancient environments with respect to the suitability for life by constraining the primary rock type and the redox conditions under which it crystallized, the extent of alteration and weathering, the type of alteration and weathering products, and the processes and environmental conditions for alteration and weathering. Fe Mossbauer spectroscopy is a powerful tool to investigate Fe-bearing compounds. It can identify Fe-bearing minerals, determine Fe oxidation states with high accuracy, quantify the distribution of Fe between mineralogical phases, and provide clues about crystallinity and particle sizes. Two miniaturized Mossbauer spectrometers are on board of the NASA Mars Exploration Rovers Spirit and Opportunity. The Fe-bearing minerals goethite, an iron oxide-hydroxide, and jarosite, an iron hydroxide sulfate, were identified by Mossbauer spectroscopy in Gusev Crater and at Meridiani Planum, respectively, providing in situ proof of an aqueous history of the two landing sites and constraints on their habitability. Hematite identified by Mossbauer spectroscopy at both landing sites adds further evidence for an aqueous history. On Earth, Mossbauer spectroscopy was used to monitor possibly microbially-induced changes of Fe-oxidation states in basaltic glass samples exposed at the Loihi Seamount, a deep sea hydrothermal vent system, which might be analogous to possible extraterrestrial habitats on ancient Mars or the Jovian moon Europa today.
Nature Geoscience | 2009
Alexis S. Templeton; Emily Knowles; D. L. Eldridge; Bruce W. Arey; Alice Dohnalkova; S. M. Webb; B. E. Bailey; Bradley M. Tebo; Hubert Staudigel
Geomicrobiology Journal | 2009
B. E. Bailey; Alexis S. Templeton; Hubert Staudigel; Bradley M. Tebo
Hyperfine Interactions | 2006
C. Schröder; G. Klingelhöfer; B. E. Bailey; Hubert Staudigel
Archive | 2004
B. E. Bailey; Hubert Staudigel; Alexis S. Templeton; Bradley M. Tebo; Frank E. Ryerson; Terry Plank; C. Schröder; Goestar Klingelhoefer
Archive | 2005
Alexis S. Templeton; Bradley M. Tebo; Hubert Staudigel; B. E. Bailey; L. Haucke; Thomas P. Trainor
Archive | 2006
L. A. Sudek; B. E. Bailey; Alexis S. Templeton; Hubert Staudigel; Bradley M. Tebo
Archive | 2006
B. E. Bailey; L. A. Sudek; Alexis S. Templeton; Hubert Staudigel; Bradley M. Tebo; Craig L. Moyer; R. Eric Davis
Archive | 2006
Suman Banerjee; Thelma S. Berquó; Jasmine Erbs; R. Lee Penn; Hubert Staudigel; L. A. Sudek; B. E. Bailey; Bradley M. Tebo
Archive | 2005
B. E. Bailey; Alexis S. Templeton; L. Haucke; Hubert Staudigel; Bradley M. Tebo