Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B Faddegon is active.

Publication


Featured researches published by B Faddegon.


Medical Physics | 1995

BEAM: a Monte Carlo code to simulate radiotherapy treatment units.

D. W. O. Rogers; B Faddegon; G Ding; C.‐M. Ma; J. We; T Mackie

This paper describes BEAM, a general purpose Monte Carlo code to simulate the radiation beams from radiotherapy units including high-energy electron and photon beams, 60Co beams and orthovoltage units. The code handles a variety of elementary geometric entities which the user puts together as needed (jaws, applicators, stacked cones, mirrors, etc.), thus allowing simulation of a wide variety of accelerators. The code is not restricted to cylindrical symmetry. It incorporates a variety of powerful variance reduction techniques such as range rejection, bremsstrahlung splitting and forcing photon interactions. The code allows direct calculation of charge in the monitor ion chamber. It has the capability of keeping track of each particles history and using this information to score separate dose components (e.g., to determine the dose from electrons scattering off the applicator). The paper presents a variety of calculated results to demonstrate the codes capabilities. The calculated dose distributions in a water phantom irradiated by electron beams from the NRC 35 MeV research accelerator, a Varian Clinac 2100C, a Philips SL75-20, an AECL Therac 20 and a Scanditronix MM50 are all shown to be in good agreement with measurements at the 2 to 3% level. Eighteen electron spectra from four different commercial accelerators are presented and various aspects of the electron beams from a Clinac 2100C are discussed. Timing requirements and selection of parameters for the Monte Carlo calculations are discussed.


Medical Physics | 2007

Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo‐based photon and electron external beam treatment planning

Indrin J. Chetty; B Curran; Joanna E. Cygler; J DeMarco; Gary A. Ezzell; B Faddegon; Iwan Kawrakow; P Keall; Helen Liu; C.-M. Charlie Ma; D. W. O. Rogers; J Seuntjens; Daryoush Sheikh-Bagheri; J Siebers

The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for improved dose distributions to influence treatment outcomes, the long calculation times previously associated with MC simulation rendered this method impractical for routine clinical treatment planning. However, the development of faster codes optimized for radiotherapy calculations and improvements in computer processor technology have substantially reduced calculation times to, in some instances, within minutes on a single processor. These advances have motivated several major treatment planning system vendors to embark upon the path of MC techniques. Several commercial vendors have already released or are currently in the process of releasing MC algorithms for photon and/or electron beam treatment planning. Consequently, the accessibility and use of MC treatment planning algorithms may well become widespread in the radiotherapy community. With MC simulation, dose is computed stochastically using first principles; this method is therefore quite different from conventional dose algorithms. Issues such as statistical uncertainties, the use of variance reduction techniques, theability to account for geometric details in the accelerator treatment head simulation, and other features, are all unique components of a MC treatment planning algorithm. Successful implementation by the clinical physicist of such a system will require an understanding of the basic principles of MC techniques. The purpose of this report, while providing education and review on the use of MC simulation in radiotherapy planning, is to set out, for both users and developers, the salient issues associated with clinical implementation and experimental verification of MC dose algorithms. As the MC method is an emerging technology, this report is not meant to be prescriptive. Rather, it is intended as a preliminary report to review the tenets of the MC method and to provide the framework upon which to build a comprehensive program for commissioning and routine quality assurance of MC-based treatment planning systems.


Medical Physics | 2012

TOPAS: An innovative proton Monte Carlo platform for research and clinical applications

J Perl; J Shin; J Schümann; B Faddegon; Harald Paganetti

PURPOSE While Monte Carlo particle transport has proven useful in many areas (treatment head design, dose calculation, shielding design, and imaging studies) and has been particularly important for proton therapy (due to the conformal dose distributions and a finite beam range in the patient), the available general purpose Monte Carlo codes in proton therapy have been overly complex for most clinical medical physicists. The learning process has large costs not only in time but also in reliability. To address this issue, we developed an innovative proton Monte Carlo platform and tested the tool in a variety of proton therapy applications. METHODS Our approach was to take one of the already-established general purpose Monte Carlo codes and wrap and extend it to create a specialized user-friendly tool for proton therapy. The resulting tool, TOol for PArticle Simulation (TOPAS), should make Monte Carlo simulation more readily available for research and clinical physicists. TOPAS can model a passive scattering or scanning beam treatment head, model a patient geometry based on computed tomography (CT) images, score dose, fluence, etc., save and restart a phase space, provides advanced graphics, and is fully four-dimensional (4D) to handle variations in beam delivery and patient geometry during treatment. A custom-designed TOPAS parameter control system was placed at the heart of the code to meet requirements for ease of use, reliability, and repeatability without sacrificing flexibility. RESULTS We built and tested the TOPAS code. We have shown that the TOPAS parameter system provides easy yet flexible control over all key simulation areas such as geometry setup, particle source setup, scoring setup, etc. Through design consistency, we have insured that user experience gained in configuring one component, scorer or filter applies equally well to configuring any other component, scorer or filter. We have incorporated key lessons from safety management, proactively removing possible sources of user error such as line-ordering mistakes. We have modeled proton therapy treatment examples including the UCSF eye treatment head, the MGH stereotactic alignment in radiosurgery treatment head and the MGH gantry treatment heads in passive scattering and scanning modes, and we have demonstrated dose calculation based on patient-specific CT data. Initial validation results show agreement with measured data and demonstrate the capabilities of TOPAS in simulating beam delivery in 3D and 4D. CONCLUSIONS We have demonstrated TOPAS accuracy and usability in a variety of proton therapy setups. As we are preparing to make this tool freely available for researchers in medical physics, we anticipate widespread use of this tool in the growing proton therapy community.


Medical Physics | 2001

Description and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom.

C. L. Hartmann Siantar; R. S. Walling; Thomas P. Daly; B Faddegon; N. Albright; Paul M. Bergstrom; Alex F. Bielajew; C Chuang; Dewey Garrett; Ronald K. House; D. Knapp; D. J. Wieczorek; Lynn Verhey

PEREGRINE is a three-dimensional Monte Carlo dose calculation system written specifically for radiotherapy. This paper describes the implementation and overall dosimetric accuracy of PEREGRINE physics algorithms, beam model, and beam commissioning procedure. Particle-interaction data, tracking geometries, scoring, variance reduction, and statistical analysis are described. The BEAM code system is used to model the treatment-independent accelerator head, resulting in the identification of primary and scattered photon sources and an electron contaminant source. The magnitude of the electron source is increased to improve agreement with measurements in the buildup region in the largest fields. Published measurements provide an estimate of backscatter on monitor chamber response. Commissioning consists of selecting the electron beam energy, determining the scale factor that defines dose per monitor unit, and describing treatment-dependent beam modifiers. We compare calculations with measurements in a water phantom for open fields, wedges, blocks, and a multileaf collimator for 6 and 18 MV Varian Clinac 2100C photon beams. All calculations are reported as dose per monitor unit. Aside from backscatter estimates, no additional, field-specific normalization is included in comparisons with measurements. Maximum discrepancies were less than either 2% of the maximum dose or 1.2 mm in isodose position for all field sizes and beam modifiers.


Medical Physics | 1997

Accurate characterization of Monte Carlo calculated electron beams for radiotherapy

C.‐M. Ma; B Faddegon; D. W. O. Rogers; T Mackie

Monte Carlo studies of dose distributions in patients treated with radiotherapyelectron beams would benefit from generalized models of clinical beams if such models introduce little error into the dose calculations. Methodology is presented for the design of beam models, including their evaluation in terms of how well they preserve the character of the clinical beam, and the effect of the beam models on the accuracy of dose distributions calculated with Monte Carlo. This methodology has been used to design beam models for electron beams from two linear accelerators, with either a scanned beam or a scatteredbeam.Monte Carlo simulations of the accelerator heads are done in which a record is kept of the particle phase-space, including the charge, energy, direction, and position of every particle that emerges from the treatment head, along with a tag regarding the details of the particle history. The character of the simulated beams are studied in detail and used to design various beam models from a simple point source to a sophisticated multiple-source model which treats particles from different parts of a linear accelerator as from different sub-sources. Dose distributions calculated using both the phase-space data and the multiple-source model agree within 2%, demonstrating that the model is adequate for the purpose of Monte Carlotreatment planning for the beams studied. Benefits of the beam models over phase-space data for dose calculation are shown to include shorter computation time in the treatment head simulation and a smaller disk space requirement, both of which impact on the clinical utility of Monte Carlotreatment planning.


Medical Physics | 2008

Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target

B Faddegon; Vincent Wu; Jean Pouliot; Bijumon Gangadharan; Ali Bani-Hashemi

Megavoltage cone beam computed tomography (MVCBCT) is routinely used for visualizing anatomical structures and implanted fiducials for patient positioning in radiotherapy. MVCBCT using a 6 MV treatment beam with high atomic number (Z) target and flattening filter in the beamline, as done conventionally, has lower image quality than can be achieved with a MV beam due to heavy filtration of the low-energy bremsstrahlung. The unflattened beam of a low Z target has an abundance of diagnostic energy photons, detected with modern flat panel detectors with much higher efficiency given the same dose to the patient. This principle guided the development of a new megavoltage imaging beamline (IBL) for a commercial radiotherapy linear accelerator. A carbon target was placed in one of the electron primary scattering foil slots on the target-foil slide. A PROM on a function controller board was programed to put the carbon target in place for MVCBCT. A low accelerating potential of 4.2 MV was used for the IBL to restrict leakage of primary electrons through the target such that dose from x rays dominated the signal in the monitor chamber and the patient surface dose. Results from phantom and cadaver images demonstrated that the IBL had much improved image quality over the treatment beam. For similar imaging dose, the IBL improved the contrast-to-noise ratio by as much as a factor of 3 in soft tissue over that of the treatment beam. The IBL increased the spatial resolution by about a factor of 2, allowing the visualization of finer anatomical details. Images of the cadaver contained useful information with doses as low as 1 cGy. The IBL may be installed on certain models of linear accelerators without mechanical modification and results in significant improvement in the image quality with the same dose, or images of the same quality with less than one-third of the dose.


Cancer immunology research | 2015

TH2-Polarized CD4+ T Cells and Macrophages Limit Efficacy of Radiotherapy

Stephen L. Shiao; Brian Ruffell; David G. DeNardo; B Faddegon; Catherine C. Park; Lisa M. Coussens

Shiao and colleagues report that inhibiting either macrophage recruitment by CSF-1/CSF-1R-blockade, or macrophage polarization by IL4/13 neutralization, delayed tumor regrowth after radiotherapy or chemotherapy, demonstrating that macrophage antagonists improve responses to cytotoxic therapies. Radiotherapy and chemotherapy following surgery are mainstays of treatment for breast cancer. Although multiple studies have recently revealed the significance of immune cells as mediators of chemotherapy response in breast cancer, less is known regarding roles for leukocytes as mediating outcomes following radiotherapy. To address this question, we utilized a syngeneic orthotopic murine model of mammary carcinogenesis to investigate if response to radiotherapy could be improved when select immune cells or immune-based pathways in the mammary microenvironment were inhibited. Treatment of mammary tumor–bearing mice with either a neutralizing mAb to colony-stimulating factor-1 (CSF-1) or a small-molecule inhibitor of the CSF-1 receptor kinase (i.e., PLX3397), resulting in efficient macrophage depletion, significantly delayed tumor regrowth following radiotherapy. Delayed tumor growth in this setting was associated with increased presence of CD8+ T cells and reduced presence of CD4+ T cells, the main source of the TH2 cytokine IL4 in mammary tumors. Selective depletion of CD4+ T cells or neutralization of IL4 in combination with radiotherapy phenocopied results following macrophage depletion, whereas depletion of CD8+ T cells abrogated improved response to radiotherapy following these therapies. Analogously, therapeutic neutralization of IL4 or IL13, or IL4 receptor alpha deficiency, in combination with the chemotherapy paclitaxel, resulted in slowed primary mammary tumor growth by CD8+ T-cell–dependent mechanisms. These findings indicate that clinical responses to cytotoxic therapy in general can be improved by neutralizing dominant TH2-based programs driving protumorigenic and immune-suppressive pathways in mammary (breast) tumors to improve outcomes. Cancer Immunol Res; 3(5); 518–25. ©2015 AACR.


IEEE Transactions on Medical Imaging | 2008

Algorithm for X-ray Scatter, Beam-Hardening, and Beam Profile Correction in Diagnostic (Kilovoltage) and Treatment (Megavoltage) Cone Beam CT

Jonathan S. Maltz; Bijumon Gangadharan; Supratik Bose; Dimitre Hristov; B Faddegon; Ajay Paidi; Ali Bani-Hashemi

Quantitative reconstruction of cone beam X-ray computed tomography (CT) datasets requires accurate modeling of scatter, beam-hardening, beam profile, and detector response. Typically, commercial imaging systems use fast empirical corrections that are designed to reduce visible artifacts due to incomplete modeling of the image formation process. In contrast, Monte Carlo (MC) methods are much more accurate but are relatively slow. Scatter kernel superposition (SKS) methods offer a balance between accuracy and computational practicality. We show how a single SKS algorithm can be employed to correct both kilovoltage (kV) energy (diagnostic) and megavoltage (MV) energy (treatment) X-ray images. Using MC models of kV and MV imaging systems, we map intensities recorded on an amorphous silicon flat panel detector to water-equivalent thicknesses (WETs). Scattergrams are derived from acquired projection images using scatter kernels indexed by the local WET values and are then iteratively refined using a scatter magnitude bounding scheme that allows the algorithm to accommodate the very high scatter-to-primary ratios encountered in kV imaging. The algorithm recovers radiological thicknesses to within 9% of the true value at both kV and megavolt energies. Nonuniformity in CT reconstructions of homogeneous phantoms is reduced by an average of 76% over a wide range of beam energies and phantom geometries.


Medical Physics | 2004

Dosimetry of a prototype retractable eMLC for fixed-beam electron therapy

Kenneth R. Hogstrom; Robert A. Boyd; John A. Antolak; Michelle Marie Svatos; B Faddegon; Julian G. Rosenman

An electron multileaf collimator (eMLC) has been designed that is unique in that it retracts to 37 cm from the isocenter [63-cm source-to-collimator distance (SCD)] and can be deployed to distances of 20 and 10 cm from the isocenter (80 and 90 cm SCD, respectively). It is expected to be capable of arc therapy at 63 cm SCD; isocentric, fixed-beam therapy at 80 cm SCD; and source-to-surface distance (SSD), fixed-beam therapy at 90 cm SCD. In all positions, its leaves could be used for unmodulated or intensity-modulated therapy. Our goal in the present work is to describe the general characteristics of the eMLC and to demonstrate that its leakage characteristics and dosimetry are adequate for SSD, fixed-beam therapy as an alternative to Cerrobend cutouts with applicators once the prototypes leaves are motorized. Our eMLC data showed interleaf electron leakage at 15 MeV to be less than 0.1% based on a 0.0025 cm manufacturing tolerance, and lateral electron leakage at 5 and 15 MeV to be less than 2%. X-ray leakage through the leaves was 1.6% at 15 MeV. Our data showed that beam penumbra was independent of direction and leaf position. The dosimetric properties of square fields formed by the eMLC were very consistent with those formed by Cerrobend inserts in the 20 x 20 cm2 applicator. Output factors exhibited similar field-size dependence. Airgap factors exhibited almost identical field-size dependence at two SSDs (105 and 110 cm), consistent with the common assumption that airgap factors are applicator independent. Percent depth-dose curves were similar, but showed variations up to 3% in the buildup region. The pencil-beam algorithm (PBA) fit measured data from the eMLC and applicator-cutout systems equally well, and the resulting two-dimensional (2-D) dose distributions, as predicted by the PBA, agreed well at common airgap distance. Simulating patient setups for breast and head and neck treatments showed that almost all fields could be treated using similar SSDs as when using applicators, although head and neck treatments require placing the patients head on a head-holder treatment table extension. The results of this work confirmed our design goals and support the potential use of the eMLC design in the clinical setting. The eMLC should allow the same treatments as are typically delivered with the electron applicator-cutout system currently used for fixed-beam therapy.


Medical Physics | 2006

Intraoperative radiation therapy using mobile electron linear accelerators: Report of AAPM Radiation Therapy Committee Task Group No. 72

A. Sam Beddar; Peter J. Biggs; Sha Chang; Gary A. Ezzell; B Faddegon; Frank W. Hensley; Michael D. Mills

Intraoperative radiation therapy (IORT) has been customarily performed either in a shielded operating suite located in the operating room (OR) or in a shielded treatment room located within the Department of Radiation Oncology. In both cases, this cancer treatment modality uses stationary linear accelerators. With the development of new technology, mobile linear accelerators have recently become available for IORT. Mobility offers flexibility in treatment location and is leading to a renewed interest in IORT. These mobile accelerator units, which can be transported any day of use to almost any location within a hospital setting, are assembled in a nondedicated environment and used to deliver IORT. Numerous aspects of the design of these new units differ from that of conventional linear accelerators. The scope of this Task Group (TG-72) will focus on items that particularly apply to mobile IORT electron systems. More specifically, the charges to this Task Group are to (i) identify the key differences between stationary and mobile electron linear accelerators used for IORT, (ii) describe and recommend the implementation of an IORT program within the OR environment, (iii) present and discuss radiation protection issues and consequences of working within a nondedicated radiotherapy environment, (iv) describe and recommend the acceptance and machine commissioning of items that are specific to mobile electron linear accelerators, and (v) design and recommend an efficient quality assurance program for mobile systems.

Collaboration


Dive into the B Faddegon's collaboration.

Top Co-Authors

Avatar

J Perl

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D Sawkey

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E Schreiber

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. K. Ross

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge