Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Grossan is active.

Publication


Featured researches published by B. Grossan.


Optics Express | 2013

Slewing Mirror Telescope optics for the early observation of UV/optical photons from Gamma-Ray Bursts

S. Jeong; J. W. Nam; Ki-Beom Ahn; I.H. Park; S.-W. Kim; J. Lee; H. Lim; S. Brandt; Carl Budtz-Jørgensen; A. J. Castro-Tirado; Po-Hsun Chen; M. Cho; Jong-ryul Choi; B. Grossan; M.-H. A. Huang; A. Jung; J. E. Kim; Minwoo Kim; Y. W. Kim; Eric V. Linder; Kyoung-Wook Min; G. W. Na; M. I. Panasyuk; J. Ripa; V. Reglero; George F. Smoot; J.E. Suh; S. I. Svertilov; N. Vedenkin; I. Yashin

We report on design, manufacture, and testing of a Slewing Mirror Telescope (SMT), the first of its kind and a part of Ultra-Fast Flash Observatory-pathfinder (UFFO-p) for space-based prompt measurement of early UV/optical light curves from Gamma-Ray Bursts (GRBs). Using a fast slewing mirror of 150 mm diameter mounted on a 2 axis gimbal stage, SMT can deliver the images of GRB optical counterparts to the intensified CCD detector within 1.5~1.8 s over ± 35 degrees in the slewing field of view. Its Ritchey-Chrétien telescope of 100 mm diameter provides a 17 × 17 arcmin² instantaneous field of view. Technical details of design, construction, the laboratory performance tests in space environments for this unique SMT are described in conjunction with the plan for in-orbit operation onboard the Lomonosov satellite in 2013.


The Astrophysical Journal | 2018

GW170817 Most Likely Made a Black Hole

David Pooley; Pawan Kumar; J. Craig Wheeler; B. Grossan

There are two outstanding issues regarding the neutron-star merger event GW170817: the nature of the compact remnant and the interstellar shock. The mass of the remnant of GW170817, ~2.7 , implies that the remnant could be either a massive rotating neutron star, or a black hole. We report Chandra Directors Discretionary Time observations made in 2017 December and 2018 January, and we reanalyze earlier observations from 2017 August and 2017 September, in order to address these unresolved issues. We estimate the X-ray flux from a neutron star remnant and compare that to the measured X-ray flux. If we assume that the spin-down luminosity of any putative neutron star is converted to pulsar wind nebula X-ray emission in the 0.5–8 keV band with an efficiency of 10−3, for a dipole magnetic field with 3 × 1011 G < B < 1014 G, a rising X-ray signal would result and would be brighter than that observed by day 107; we therefore conclude that the remnant of GW170817 is most likely a black hole. Independent of any assumptions of X-ray efficiency, however, if the remnant is a rapidly rotating magnetized neutron star, the total energy in the external shock should rise by a factor ~102 (to ~1052 erg) after a few years; therefore, Chandra observations over the next year or two that do not show substantial brightening will rule out such a remnant. The same observations can distinguish between two different models for the relativistic outflow, either an angular or radially varying structure.


arXiv: Cosmology and Nongalactic Astrophysics | 2012

Design and Fabrication of Detector Module for UFFO Burst Alert & Trigger Telescope

A. Jung; S. Ahmad; P. Barrillon; S. Brandt; Carl Budtz-Jørgensen; A. J. Castro-Tirado; Pisin Chen; Ji Nyeong Choi; Yeon Ju Choi; P. Connell; S. Dagoret-Campagne; C. J. Eyles; B. Grossan; Ming-Huey A. Huang; S. Jeong; J. E. Kim; Min Bin Kim; Sug-Whan Kim; Y. W. Kim; A.S. Krasnov; Jik Lee; H. Lim; Eric V. Linder; T.-C. Liu; Niels Lund; Kyung Wook Min; Go Woon Na; J. W. Nam; M. I. Panasyuk; I. H. Park

The Ultra-Fast Flash Observatory (UFFO) pathfinder is a space mission devoted to the measurement of Gamma-Ray Bursts (GRBs), especially their early light curves which will give crucial information on the progenitor stars and central engines of the GRBs. It consists of two instruments: the UFFO Burst Alert & Trigger telescope (UBAT) for the detection of GRB locations and the Slewing Mirror Telescope (SMT) for the UV/optical afterglow observations, upon triggering by UBAT. The UBAT employs a coded-mask γ/X-ray camera with a wide field of view (FOV), and is comprised of three parts: a coded mask, a hopper, and a detector module (DM). The UBAT DM consists of a LYSO scintillator crystal array, multi-anode photo multipliers, and analog and digital readout electron- ics. We present here the design and fabrication of the UBAT DM, as well as its preliminary test results.


Proceedings of SPIE | 2012

Design and implementation of the UFFO burst alert and trigger telescope

J. E. Kim; S. Ahmad; P. Barrillon; S. Brandt; Carl Budtz-Jørgensen; A. J. Castro-Tirado; Pisin Chen; Y.J. Choi; P. Connell; S. Dagoret-Campagne; C. Eyles; B. Grossan; M.-H. A. Huang; A. Jung; S. Jeong; M. B. Kim; S.-W. Kim; Y. W. Kim; A.S. Krasnov; Jue-Yeon Lee; H. Lim; E.V. Linder; T.-C. Liu; Niels Lund; Kyoung-Wook Min; G. W. Na; J. W. Nam; M. I. Panasyuk; I. H. Park; J. Ripa

The Ultra Fast Flash Observatory pathfinder (UFFO-p) is a telescope system designed for the detection of the prompt optical/UV photons from Gamma-Ray Bursts (GRBs), and it will be launched onboard the Lomonosov spacecraft in 2012. The UFFO-p consists of two instruments: the UFFO Burst Alert and Trigger telescope (UBAT) for the detection and location of GRBs, and the Slewing Mirror Telescope (SMT) for measurement of the UV/optical afterglow. The UBAT isa coded-mask aperture X-ray camera with a wide field of view (FOV) of 1.8 sr. The detector module consists of the YSO(Yttrium Oxyorthosilicate) scintillator crystal array, a grid of 36 multi-anode photomultipliers (MAPMTs), and analog and digital readout electronics. When the γ /X-ray photons hit the YSO scintillator crystal array, it produces UV photons by scintillation in proportion to the energy of the incident γ /X-ray photons. The UBAT detects X-ray source of GRB inthe 5 ~ 100 keV energy range, localizes the GRB within 10 arcmin, and sends the SMT this information as well as drift correction in real time. All the process is controlled by a Field Programmable Gates Arrays (FPGA) to reduce the processing time. We are in the final stages of the development and expect to deliver the instrument for the integration with the spacecraft. In what follows we present the design, fabrication and performance test of the UBAT.


arXiv: Instrumentation and Methods for Astrophysics | 2011

Implementation of the readout system in the UFFO Slewing Mirror Telescope

J. E. Kim; H. Lim; A. Jung; Ki-Beom Ahn; H.S. Choi; Y.J. Choi; B. Grossan; I. Hermann; S. Jeong; S.-W. Kim; Young-Seok Kim; Jue-Yeon Lee; Eric V. Linder; Kyoung-Wook Min; G. W. Na; J. W. Nam; Koo Hyun Nam; M. I. Panasyuk; I. H. Park; George F. Smoot; Young Duk Suh; S. I. Svertilov; N. Vedenken; I. V. Yashin; M.H. Zhao

China Center of Advanced Science and Technology (CCAST);Chinese Academy of Sciences (CAS);Institute of High Energy Physics (IHEP);National Natural Science Foundation of China (NSFC)


arXiv: High Energy Astrophysical Phenomena | 2011

The UFFO (Ultra Fast Flash Observatory) Pathfinder: Science and Mission

Pisin Chen; S. Ahmad; K. Ahn; P. Barrillon; S. Blin-Bondil; S. Brandt; Carl Budtz-Jørgensen; P. Connell; S. Dagoret-Campagne; C. De La Taille; C. Eyles; B. Grossan; S. Jeong; A. Jung; Jik Lee; H. Lim; Niels Lund; K. Nam; V. Regle; I. V. Yashin

Hundreds of gamma-ray burst (GRB) optical light curves have been measured since the discovery of opti- cal afterglows. However, even after nearly 7 years of operation of the Swift Observatory, only a handful of measure- ments have been made soon (within a minute) after the gamma ray signal. This lack of early observations fails to ad- dress burst physics at short time scales associated with prompt emissions and progenitors. Because of this lack of sub- minute data, the characteristics of the rise phase of optical light curve of short-hard type GRB and rapid-rising GRB, which may account for ~30% of all GRB, remain practically unknown. We have developed methods for reaching sub- minute and sub-second timescales in a small spacecraft observatory. Rather than slewing the entire spacecraft to aim the optical instrument at the GRB position, we use rapidly moving mirror to redirect our optical beam. As a first step, we employ motorized slewing mirror telescope (SMT), which can point to the event within 1s, in the UFFO Pathfind- er GRB Telescope onboard the Lomonosov satellite to be launched in Nov. 2011. UFFOs sub-minute measurements of the optical emission of dozens of GRB each year will result in a more rigorous test of current internal shock mod- els, probe the extremes of bulk Lorentz factors, provide the first early and detailed measurements of fast-rise GRB optical light curves, and help verify the prospect of GRB as a new standard candle. We will describe the science and the mission of the current UFFO Pathfinder project, and our plan of a full-scale UFFO-100 as the next step.


Modern Physics Letters A | 2013

THE UFFO SLEWING MIRROR TELESCOPE FOR EARLY OPTICAL OBSERVATION FROM GAMMA RAY BURSTS

J. W. Nam; S. Ahmad; Ki-Beom Ahn; P. Barrillon; S. Brandt; Carl Budtz-Jørgensen; A. J. Castro-Tirado; S.-H. Chang; C.R. Chen; Pisin Chen; Y.J. Choi; P. Connell; S. Dagoret-Campagne; C. Eyles; B. Grossan; M.A. Huang; J.J. Huang; S. Jeong; A. Jung; J. E. Kim; S. H. Kim; Young-Seok Kim; Julie S. Lee; H. Lim; C.-Y. Lin; Eric V. Linder; T.-C. Liu; Niels Lund; Kyoung-Wook Min; G. W. Na

While some space born observatories, such as SWIFT and FERMI, have been operating, early observation of optical after grow of GRBs is still remained as an unexplored region. The Ultra-Fast Flash Observatory (UFFO) project is a space observatory for optical follow-ups of GRBs, aiming to explore the first 60 seconds of GRBs optical emission. Using fast moving mirrors to redirect our optical path rather than slewing the entire spacecraft, UFFO is utilized to catch early optical emissions from GRB within 1 sec. We have developed the UFFO Pathfinder Telescope which is going to be on board of the Lomonosov satellite and launched in middle of 2012. We will discuss about scientific potentials of the UFFO project and present the payload development status, especially for Slewing Mirror Telescope which is the key instrument of the UFFO-pathfinder mission.


Journal of Instrumentation | 2013

Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts

J. E. Kim; H. Lim; J. W. Nam; S. Brandt; Carl Budtz-Jørgensen; A. J. Castro-Tirado; P. Chen; H.S. Choi; B. Grossan; M.-H. A. Huang; S. Jeong; A. Jung; Minwoo Kim; S.-W. Kim; J. Lee; Eric V. Linder; T.-C. Liu; G. W. Na; M. I. Panasyuk; I.H. Park; J. Ripa; V. Reglero; George F. Smoot; S. I. Svertilov; N. Vedenkin; I. V. Yashin

The Slewing Mirror Telescope (SMT) was proposed for rapid response to prompt UV/optical photons from Gamma-Ray Bursts (GRBs). The SMT is a key component of the Ultra-Fast Flash Observatory (UFFO)-pathfinder, which will be launched aboard the Lomonosov spacecraft at the end of 2013. The SMT utilizes a motorized mirror that slews rapidly forward to its target within a second after triggering by an X-ray coded mask camera, which makes unnecessary a reorientation of the entire spacecraft. Subsequent measurement of the UV/optical is accomplished by a 10 cm aperture Ritchey-Chretien telescope and the focal plane detector of Intensified Charge-Coupled Device (ICCD). The ICCD is sensitive to UV/optical photons of 200–650 nm in wavelength by using a UV-enhanced S20 photocathode and amplifies photoelectrons at a gain of 104–106 in double Micro-Channel Plates. These photons are read out by a Kodak KAI-0340 interline CCD sensor and a CCD Signal Processor with 10-bit Analog-to-Digital Converter. Various control clocks for CCD readout are implemented using a Field Programmable Gate Array (FPGA). The SMT readout is in charge of not only data acquisition, storage and transfer, but also control of the slewing mirror, the ICCD high voltage adjustments, power distribution, and system monitoring by interfacing to the UFFO-pathfinder. These functions are realized in the FPGA to minimize power consumption and to enhance processing time. The SMT readout electronics are designed and built to meet the spacecrafts constraints of power consumption, mass, and volume. The entire system is integrated with the SMT optics, as is the UFFO-pathfinder. The system has been tested and satisfies the conditions of launch and those of operation in space: those associated with shock and vibration and those associated with thermal and vacuum, respectively. In this paper, we present the SMT readout electronics: the design, construction, and performance, as well as the results of space environment test.


Proceedings of SPIE | 2012

A next generation Ultra-Fast Flash Observatory (UFFO-100) for IR/optical observations of the rise phase of gamma-ray bursts

B. Grossan; I. H. Park; S. Ahmad; Ki-Beom Ahn; P. Barrillon; S. Brandt; Carl Budtz-Jørgensen; A. J. Castro-Tirado; Pisin Chen; H. S. Choi; Y.J. Choi; P. Connell; S. Dagoret-Campagne; C. De La Taille; C. Eyles; I. Hermann; M.-H. A. Huang; A. Jung; S. Jeong; J. E. Kim; Myung Hwa Kim; S.-W. Kim; Young-Seok Kim; Jue-Yeon Lee; H. Lim; E.V. Linder; T.-C. Liu; Niels Lund; Kyoung-Wook Min; G. W. Na

The Swift Gamma-ray Burst (GRB) observatory responds to GRB triggers with optical observations in ~ 100 s, butcannot respond faster than ~ 60 s. While some rapid-response ground-based telescopes have responded quickly, thenumber of sub-60 s detections remains small. In 2013 June, the Ultra-Fast Flash Observatory-Pathfinder is expected tobe launched on the Lomonosov spacecraft to investigate early optical GRB emission. Though possessing uniquecapability for optical rapid-response, this pathfinder mission is necessarily limited in sensitivity and event rate; here wediscuss the next generation of rapid-response space observatory instruments. We list science topics motivating ourinstruments, those that require rapid optical-IR GRB response, including: A survey of GRB rise shapes/times,measurements of optical bulk Lorentz factors, investigation of magnetic dominated (vs. non-magnetic) jet models,internal vs. external shock origin of prompt optical emission, the use of GRBs for cosmology, and dust evaporation inthe GRB environment. We also address the impacts of the characteristics of GRB observing on our instrument andobservatory design. We describe our instrument designs and choices for a next generation space observatory as a secondinstrument on a low-earth orbit spacecraft, with a 120 kg instrument mass budget. Restricted to relatively modest mass,power, and launch resources, we find that a coded mask X-ray camera with 1024 cm2 of detector area could rapidlylocate about 64 GRB triggers/year. Responding to the locations from the X-ray camera, a 30 cm aperture telescope witha beam-steering system for rapid (~ 1 s) response and a near-IR camera should detect ~ 29 GRB, given Swift GRBproperties. The additional optical camera would permit the measurement of a broadband optical-IR slope, allowingbetter characterization of the emission, and dynamic measurement of dust extinction at the source, for the first time.


The Astrophysical Journal | 1996

The Weak Blue Bump of H2106-099 and Active Galactic Nuclei Dereddening

B. Grossan; Ronald A. Remillard; Hale Bradt; Roger J. V. Brissenden; Takaya Ohashi; T. Sakao

We present multi-frequency spectra of the Seyfert 1 galaxy H2106-099, from radio to hard X-rays, spanning over a decade of observations. The hard X-ray (2-20 keV) spectrum measured with Ginga had a Log slope of -0.80 +/- 0.02 on 1988 May 18 and -1.02 +/- 0.10 on 1988 May 22 / 23 UT, with no observed flux changes. Other measurements showed variability and unusual spectral features: The V band flux changed by a factor of 1.8 (> 10 sigma) in six weeks. Only moderate optical Fe II emission is present, but strong [FeVII] and [Fe X] lines are present in some epochs. The Balmer lines show > 25% variations in flux relative to the mean, and He I changed by more than 100% relative to the mean in <~ six years. The most surprising finds came from the composite UV through near-IR spectrum: If the spectrum is de-reddened by the galactic extinction value (from 21 cm observations), a residual 2175 Angstrom absorption feature is present. Additional de-reddening to correct the feature yields E(B-V)=0.07 mag due to material outside our galaxy, most probably associated with the AGN or its host galaxy. No other clear indications of reddening are observed in this object, suggesting that blue bump strength measurements in low and intermediate red-shift AGN could be incorrect if derived without UV observations of the region near 2175 Angstrom in the AGN frame. After all reddening corrections are performed, the log slope of H2106-099 from the near IR (~12500 Angstrom) to the UV (~1400 Angstrom), -0.94 +/- 0.05, is steep compared to other AGN, suggesting that the blue bump in this object is intrinsically weak. Weak blue bumps are, therefore, not always an artifact caused by reddening.

Collaboration


Dive into the B. Grossan's collaboration.

Top Co-Authors

Avatar

A. Jung

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

G. W. Na

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

H. Lim

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

S. Jeong

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. E. Kim

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

Eric V. Linder

University of California

View shared research outputs
Top Co-Authors

Avatar

I. H. Park

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge