Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B.H. Hameed is active.

Publication


Featured researches published by B.H. Hameed.


Journal of Hazardous Materials | 2009

Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review.

U.G. Akpan; B.H. Hameed

This paper presents the review of the effects of operating parameters on the photocatalytic degradation of textile dyes using TiO2-based photocatalysts. It further examines various methods used in the preparations of the considered photocatalysts. The findings revealed that various parameters, such as the initial pH of the solution to be degraded, oxidizing agents, temperature at which the catalysts must be calcined, dopant(s) content and catalyst loading exert their individual influence on the photocatalytic degradation of any dye in wastewaters. It was also found out that sol-gel method is widely used in the production of TiO2-based photocatalysts because of the advantage derived from its ability to synthesize nanosized crystallized powder of the photocatalysts of high purity at relatively low temperature.


Journal of Hazardous Materials | 2009

Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass.

B.H. Hameed; A.A. Ahmad

The potential of garlic peel (GP), agricultural waste, to remove methylene blue (MB) from aqueous solution was evaluated in a batch process. Experiments were carried out as function of contact time, initial concentration (25-200mg/L), pH (4-12) and temperature (303, 313 and 323 K). Adsorption isotherms were modeled with the Langmuir, Freundlich, and Temkin isotherms. The data fitted well with the Freundlich isotherm. The maximum monolayer adsorption capacities were found to be 82.64, 123.45, and 142.86 mg/g at 303, 313, and 323 K, respectively. The kinetic data were analyzed using pseudo-first-order and pseudo-second-order models. The results indicated that the garlic peel could be an alternative for more costly adsorbents used for dye removal.


Journal of Hazardous Materials | 2008

Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste.

B.H. Hameed; D.K. Mahmoud; A.L. Ahmad

In this paper, the ability of coconut bunch waste (CBW), an agricultural waste available in large quantity in Malaysia, to remove basic dye (methylene blue) from aqueous solution by adsorption was studied. Batch mode experiments were conducted at 30 degrees C to study the effects of pH and initial concentration of methylene blue (MB). Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 70.92 mg/g at 30 degrees C. The kinetic data obtained at different concentrations have been analyzed using a pseudo-first-order, pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model.


Journal of Hazardous Materials | 2009

Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon.

I.A.W. Tan; A.L. Ahmad; B.H. Hameed

The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich-Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), standard free energy (DeltaG degrees ) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.


Journal of Hazardous Materials | 2008

Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material.

B.H. Hameed; A.A. Rahman

Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol from an aqueous solution in a batch process. Equilibrium studies were conducted in the range of 25-200mg/L initial phenol concentrations, 3-10 solution pH and at temperature of 30 degrees C. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 149.25mg/g. The dimensionless separation factor RL revealed the favorable nature of the isotherm of the phenol-activated carbon system. The pseudo-second-order kinetic model best described the adsorption process. The results proved that the prepared activated carbon was an effective adsorbent for removal of phenol from aqueous solution.


Journal of Hazardous Materials | 2009

Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions.

B.H. Hameed

In the present study, spent tea leaves (STL) were used as a new non-conventional and low-cost adsorbent for the cationic dye (methylene blue) adsorption in a batch process at 30 degrees C. Equilibrium sorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to the Langmuir isotherm and the monolayer adsorption capacity was found to be 300.052mg/g at 30 degrees C. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The results revealed that the spent tea leaves, being waste, have the potential to be used as a low-cost adsorbent for the removal of methylene blue from aqueous solutions.


Journal of Hazardous Materials | 2010

Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste.

A.A. Ahmad; B.H. Hameed

In this work, the adsorption potential of bamboo waste based granular activated carbon (BGAC) to remove C.I. Reactive Black (RB5) from aqueous solution was investigated using fixed-bed adsorption column. The effects of inlet RB5 concentration (50-200mg/L), feed flow rate (10-30 mL/min) and activated carbon bed height (40-80 mm) on the breakthrough characteristics of the adsorption system were determined. The highest bed capacity of 39.02 mg/g was obtained using 100mg/L inlet dye concentration, 80 mm bed height and 10 mL/min flow rate. The adsorption data were fitted to three well-established fixed-bed adsorption models namely, Adams-Bohart, Thomas and Yoon-Nelson models. The results fitted well to the Thomas and Yoon-Nelson models with coefficients of correlation R(2)>or=0.93 at different conditions. The BGAC was shown to be suitable adsorbent for adsorption of RB5 using fixed-bed adsorption column.


Journal of Hazardous Materials | 2009

Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones.

B.H. Hameed; J.M. Salman; A.L. Ahmad

In this work, the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on activated carbon derived from date stones (DSAC) was studied with respect to pH and initial 2,4-D concentration. The experimental data were analyzed by the Freundlich isotherm, the Langmuir isotherm, and the Temkin isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 238.10 mg/g. Pseudo-first and pseudo-second-order kinetics models were tested with the experimental data, and pseudo-first-order kinetics was the best for the adsorption of 2,4-D by DSAC with coefficients of correlation R(2)>or=0.986 for all initial 2,4-D concentrations studied. The results indicated that the DSAC is very effective for the adsorption of 2,4-D from aqueous solutions.


Journal of Hazardous Materials | 2009

An overview of landfill leachate treatment via activated carbon adsorption process

K.Y. Foo; B.H. Hameed

Water scarcity and pollution rank equal to climate change as the most urgent environmental issue for the 21st century. To date, the percolation landfill leachate into the groundwater tables and aquifer systems which poses a potential risk and potential hazards towards the public health and ecosystems, remains an aesthetic concern and consideration abroad the nations. Arising from the steep enrichment of globalization and metropolitan growth, numerous mitigating approaches and imperative technologies have currently drastically been addressed and confronted. Confirming the assertion, this paper presents a state of art review of leachate treatment technologies, its fundamental background studies, and environmental implications. Moreover, the key advance of activated carbons adsorption, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons adsorption represents a potentially viable and powerful tool, leading to the superior improvement of environmental conservation.


Advances in Colloid and Interface Science | 2009

Recent developments in the preparation and regeneration of activated carbons by microwaves

Foo Keng Yuen; B.H. Hameed

To date, microwave energy has been widely developed and applied to almost every field of chemistry. In many cases, microwave technology has proven to remarkably reducing costs, accelerating reaction rates, improving yields and selectively activating. This paper presents a state of art review of microwave technology, its background studies, fundamental chemistry and industrial applications. With the renaissance of activated carbon, there has been a steadily growing interest in this research field. The review provides a summary on recent development in preparation and regeneration of activated carbons. The key advance of introducing microwave energy has been highlighted relative to conventional methods. Moreover, the major drawbacks, challenges with its future expectation are presented and discussed. Conclusively, microwave energy is predicted to be a potentially viable and powerful replacement for fuel technology in various areas, while its progress represents an expanding field in the area of adsorption science.

Collaboration


Dive into the B.H. Hameed's collaboration.

Top Co-Authors

Avatar

K.Y. Foo

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

A.L. Ahmad

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Auta

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

M.A. Olutoye

Federal University of Technology Minna

View shared research outputs
Top Co-Authors

Avatar

U.G. Akpan

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.A. Ahmad

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

W.A. Khanday

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

V.O. Njoku

Universiti Sains Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge