Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B Han is active.

Publication


Featured researches published by B Han.


Medical Physics | 2012

X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator

Liangzhong Xiang; B Han; Colin M. Carpenter; Guillem Pratx; Yu Kuang; Lei Xing

PURPOSE The feasibility of medical imaging using a medical linear accelerator to generate acoustic waves is investigated. This modality, x-ray acoustic computed tomography (XACT), has the potential to enable deeper tissue penetration in tissue than photoacoustic tomography via laser excitation. METHODS Short pulsed (μs-range) 10 MV x-ray beams with dose-rate of approximately 30 Gy∕min were generated from a medical linear accelerator. The acoustic signals were collected with an ultrasound transducer (500 KHz central frequency) positioned around an object. The transducer, driven by a computer-controlled step motor to scan around the object, detected the resulting acoustic signals in the imaging plane at each scanning position. A pulse preamplifier, with a bandwidth of 20 KHz-2 MHz at -3 dB, and switchable gains of 40 and 60 dB, received the signals from the transducer and delivered the amplified signals to a secondary amplifier. The secondary amplifier had bandwidth of 20 KHz-30 MHz at -3 dB, and a gain range of 10-60 dB. Signals were recorded and averaged 128 times by an oscilloscope. A sampling rate of 100 MHz was used to record 2500 data points at each view angle. One set of data incorporated 200 positions as the receiver moved 360°. The x-ray generated acoustic image was then reconstructed with the filtered back projection algorithm. RESULTS The x-ray generated acoustic signals were detected from a lead rod embedded in a chicken breast tissue. The authors found that the acoustic signal was proportional to the x-ray dose deposition, with a correlation of 0.998. The two-dimensional XACT images of the lead rod embedded in chicken breast tissue were found to be in good agreement with the shape of the object. CONCLUSIONS The first x-ray acoustic computed tomography image is presented. The new modality may be useful for a number of applications, such as providing the location of a fiducial, or monitoring x-ray dose distribution during radiation therapy. Although much work is needed to improve the image quality of XACT and to explore its performance in other irradiation energies, the benefits of this modality, as highlighted in this work, encourage further study.


Medical Physics | 2012

Evaluation of the geometric accuracy of surrogate-based gated VMAT using intrafraction kilovoltage x-ray images

Ruijiang Li; E Mok; B Han; Albert C. Koong; Lei Xing

PURPOSE To evaluate the geometric accuracy of beam targeting in external surrogate-based gated volumetric modulated arc therapy (VMAT) using kilovoltage (kV) x-ray images acquired during dose delivery. METHODS Gated VMAT treatments were delivered using a Varian TrueBeam STx Linac for both physical phantoms and patients. Multiple gold fiducial markers were implanted near the target. The reference position was created for each implanted marker, representing its correct position at the gating threshold. The gating signal was generated from the RPM system. During the treatment, kV images were acquired immediately before MV beam-on at every breathing cycle, using the on-board imaging system. All implanted markers were detected and their 3D positions were estimated using in-house developed software. The positioning error of a marker is defined as the distance of the marker from its reference position for each frame of the images. The overall error of the system is defined as the average over all markers. For the phantom study, both sinusoidal motion (1D and 3D) and real human respiratory motion was simulated for the target and surrogate. In the baseline case, the two motions were synchronized for the first treatment fraction. To assess the effects of surrogate-target correlation on the geometric accuracy, a phase shift of 5% and 10% between the two motions was introduced. For the patient study, intrafraction kV images of five stereotactic body radiotherapy (SBRT) patients were acquired for one or two fractions. RESULTS For the phantom study, a high geometric accuracy was achieved in the baseline case (average error: 0.8 mm in the superior-inferior or SI direction). However, the treatment delivery is prone to geometric errors if changes in the target-surrogate relation occur during the treatment: the average error was increased to 2.3 and 4.7 mm for the phase shift of 5% and 10%, respectively. Results obtained with real human respiratory curves show a similar trend. For a target with 3D motion, the technique is able to detect geometric errors in the left-right (LR) and anterior-posterior (AP) directions. For the patient study, the average intrafraction positioning errors are 0.8, 0.9, and 1.4 mm and 95th percentile errors are 1.7, 2.1, and 2.7 mm in the LR, AP, and SI directions, respectively. CONCLUSIONS The correlation between external surrogate and internal target motion is crucial to ensure the geometric accuracy of surrogate-based gating. Real-time guidance based on kV x-ray images overcomes the potential issues in surrogate-based gating and can achieve accurate beam targeting in gated VMAT.


International Journal of Radiation Oncology Biology Physics | 2013

Clinical Implementation of Intrafraction Cone Beam Computed Tomography Imaging During Lung Tumor Stereotactic Ablative Radiation Therapy

Ruijiang Li; B Han; Bowen Meng; Peter G. Maxim; Lei Xing; Albert C. Koong; Maximilian Diehn; Billy W. Loo

PURPOSE To develop and clinically evaluate a volumetric imaging technique for assessing intrafraction geometric and dosimetric accuracy of stereotactic ablative radiation therapy (SABR). METHODS AND MATERIALS Twenty patients received SABR for lung tumors using volumetric modulated arc therapy (VMAT). At the beginning of each fraction, pretreatment cone beam computed tomography (CBCT) was used to align the soft-tissue tumor position with that in the planning CT. Concurrent with dose delivery, we acquired fluoroscopic radiograph projections during VMAT using the Varian on-board imaging system. Those kilovolt projections acquired during millivolt beam-on were automatically extracted, and intrafraction CBCT images were reconstructed using the filtered backprojection technique. We determined the time-averaged target shift during VMAT by calculating the center of mass of the tumor target in the intrafraction CBCT relative to the planning CT. To estimate the dosimetric impact of the target shift during treatment, we recalculated the dose to the GTV after shifting the entire patient anatomy according to the time-averaged target shift determined earlier. RESULTS The mean target shift from intrafraction CBCT to planning CT was 1.6, 1.0, and 1.5 mm; the 95th percentile shift was 5.2, 3.1, 3.6 mm; and the maximum shift was 5.7, 3.6, and 4.9 mm along the anterior-posterior, left-right, and superior-inferior directions. Thus, the time-averaged intrafraction gross tumor volume (GTV) position was always within the planning target volume. We observed some degree of target blurring in the intrafraction CBCT, indicating imperfect breath-hold reproducibility or residual motion of the GTV during treatment. By our estimated dose recalculation, the GTV was consistently covered by the prescription dose (PD), that is, V100% above 0.97 for all patients, and minimum dose to GTV >100% PD for 18 patients and >95% PD for all patients. CONCLUSIONS Intrafraction CBCT during VMAT can provide geometric and dosimetric verification of SABR valuable for quality assurance and potentially for treatment adaptation.


Nuclear Technology | 2011

COMPARISON OF PARTICLE-TRACKING FEATURES IN GEANT4 AND MCNPX CODES FOR APPLICATIONS IN MAPPING OF PROTON RANGE UNCERTAINTY.

B Bednarz; Gty Chen; Harald Paganetti; B Han; A Ding; X. George Xu

Abstract The accuracy of proton therapy is partially limited by uncertainties that result from changing pathological conditions in the patient such as tumor motion and shrinkage. These uncertainties can be minimized with the help of a time-resolved range telescope. Monte Carlo methods can help improve the performance of range telescopes by tracking proton interactions on a particle-by-particle basis thus broadening our understanding on the behavior of protons within the patient and the detector. This paper compared the proton multiple coulomb scattering algorithms in the Monte Carlo codes MCNPX and Geant4 to well-established scattering theories. We focus only on beam energies associated with proton imaging. Despite slight discrepancies between scattering algorithms, both codes appear to be capable of providing useful particle-tracking information for applications such as the proton range telescope.


Medical Physics | 2016

A depth‐sensing technique on 3D‐printed compensator for total body irradiation patient measurement and treatment planning

Min-Young Lee; B Han; C Jenkins; Lei Xing; Tae-Suk Suh

PURPOSE The purpose of total body irradiation (TBI) techniques is to deliver a uniform radiation dose to the entire volume of a patients body. Due to variations in the thickness of the patient, it is difficult to produce such a uniform dose distribution throughout the body. In many techniques, a compensator is used to adjust the dose delivered to various sections of the patient. The current study aims to develop and validate an innovative method of using depth-sensing cameras and 3D printing techniques for TBI treatment planning and compensator fabrication. METHODS A tablet with an integrated depth-sensing camera and motion tracking sensors was used to scan a RANDO™ phantom positioned in a TBI treatment booth to detect and store the 3D surface in a point cloud format. The accuracy of the detected surface was evaluated by comparing extracted body thickness measurements with corresponding measurements from computed tomography (CT) scan images. The thickness, source to surface distance, and off-axis distance of the phantom at different body section were measured for TBI treatment planning. A detailed compensator design was calculated to achieve a uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding, and a mixture of wax and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors. RESULTS The scan of the phantom took approximately 30 s. The mean error for thickness measurements at each section of phantom relative to CT was 0.48 ± 0.27 cm. The average fabrication error for the 3D-printed compensator was 0.16 ± 0.15 mm. In vivo measurements for an end-to-end test showed that overall dose differences were within 5%. CONCLUSIONS A technique for planning and fabricating a compensator for TBI treatment using a depth camera equipped tablet and a 3D printer was demonstrated to be sufficiently accurate to be considered for further investigation.


Proceedings of SPIE | 2013

X-ray induced photoacoustic tomography

Liangzhong Xiang; B Han; Colin M. Carpenter; Guillem Pratx; Yu Kuang; Lei Xing

X-ray induced photoacoustic tomography, also called X-ray acoustic computer tomography (XACT) is investigated in this paper. Short pulsed (μs-range) X-ray beams from a medical linear accelerator were used to generate ultrasound. The ultrasound signals were collected with an ultrasound transducer (500 KHz central frequency) positioned around an object. The transducer, driven by a computer-controlled step motor to scan around the object, detected the resulting acoustic signals in the imaging plane at each scanning position. A pulse preamplifier, with a bandwidth of 20 KHz–2 MHz at −3 dB, and switchable gains of 40 and 60 dB, received the signals from the transducer and delivered the amplified signals to a secondary amplifier. The secondary amplifier had bandwidth of 20 KHz–30 MHz at −3 dB, and a gain range of 10–60 dB. Signals were recorded and averaged 128 times by an oscilloscope. A sampling rate of 100 MHz was used to record 2500 data points at each view angle. One set of data incorporated 200 positions as the receiver moved 360°. The x-ray generated acoustic image was then reconstructed with the filtered back projection algorithm. The twodimensional XACT images of the lead rod embedded in chicken breast tissue were found to be in good agreement with the shape of the object. This new modality may be useful for a number of applications, such as providing the location of a fiducial, or monitoring x-ray dose distribution during radiation therapy.


Medical Physics | 2013

SU-C-105-06: Development of a High Resolution EPID Solution for Small Field Dosimetry

B Han; Gary Luxton; S Yu; M Lu; L Wang; E Mok; Lei Xing

PURPOSE The increasing use of small beams in VMAT and SBRT presents significant challenges and calls for new tools for dosimetry measurements. The purpose of this study is to investigate a high spatial-resolution (0.2mm) amorphous silicon flat-panel electronic portal imaging device (EPID) for small field dosimetry. METHODS A previously-developed EPID dosimetry system was used to measure the dose distribution of small fields from raw EPID-measured images. The response of the EPID specific to the linac was obtained by using a Monte Carlo simulation and a comprehensive calibration of the detector. The dosimetry system was validated against measurements of field sizes greater than 3×3cm2. In the present study, the EPID-based dosimetry measurement technique was used to obtain the relative output factor for small fields from 0.5cm to 3cm respectively created by both the jaws and the MLCs. 6MV, 10MV, and 15MV photon beams from a Varian TrueBeam were tested. The results were compared with measurements using EBT3 film, EDGE diode detector, and PinPoint ion chamber. RESULTS The diode measurement was considered as a reference in this study based on the expectation that its small size(0.8mm) avoids the field size-dependent artifacts of larger detectors. For jaw-defined fields between 2 and 3cm, measurements with all detectors agreed with diode measurements to within 2.7%. For jaw field sizes <2cm, the relative output factors measured using the EPID, film and PinPointTM were lower than the diode by averages of 3.5%, 15.1% and 23.1%, respectively. For MLC fields, output factors measured with EPID, film and PinPoint were found to differ from the diode measurements by averages of +1.7%, -2.2% and -8.1%, respectively. CONCLUSION The high spatial resolution EPID dosimetry system proved to be an accurate and efficient dosimetric tool for small field measurements. Accurate output factors can be measured for independent dosimetry calibration and verification.


Journal of Medical Physics | 2012

Fidelity of dose delivery at high dose rate of volumetric modulated arc therapy in a truebeam linac with flattening filter free beams

Georgios Kalantzis; Jianguo Qian; B Han; Gary Luxton

The purpose of this study is to assess fidelity of radiation delivery between high and low dose rates of the flattening filter free (FFF) modes of a new all-digital design medical linear accelerator (Varian TrueBeam™), particularly for plans optimized for volumetric modulated arc therapy (VMAT). Measurements were made for the two energies of flattening filter free photon beams with a Varian TrueBeam™ linac: 6 MV (6 XFFF) at 400 and 1400 MU/min, and 10 MV (10 XFFF) at 400 and 2400 MU/min. Data acquisition and analysis was performed with both ionization chambers and diode detector system Delta4, for square radiation fields and for 8 VMAT treatment plans optimized for SBRT treatment of lung tumors. For the square fields, a percent dose difference between high and low dose rate of the order of 0.3-0.4% for both photon energies was seen with the ionization chambers, while the contribution to the difference from ion recombination was found to be negligible. For both the VMAT and square-field deliveries, the Delta4 showed the same average percent dose difference between the two dose rates of ~0.8% and ~0.6% for 10 MV and 6 MV, respectively, with the lower dose rate values giving the greater measured dose compared to the high dose rate. Thus, the VMAT deliveries introduced negligible dose differences between high and low dose rate. Finally, reproducibility of dose measurements was good for both energies.


Medical Physics | 2016

SU-G-JeP1-09: Evaluation of Transperineal Ultrasound Imaging as a Potential Solution for Target Tracking During Ablative Body Radiotherapy for Prostate Cancer

M Najafi; B Han; D Cooper; Steven L. Hancock; Dimitre Hristov

PURPOSE Prostate SABR is emerging as a clinically viable, potentially cost effective alternative to prostate IMRT but its adoption is contingent on providing solutions for accurate tracking during beam delivery. Our goal is to evaluate the performance of the Clarity Autoscan ultrasound monitoring system for inter-fractional prostate motion tracking in both phantoms and in-vivo. METHODS In-vivo evaluation was performed under IRB protocol to allow data collection in prostate patients treated with VMAT whereby prostate was imaged through the acoustic window of the perineum. The probe was placed before KV imaging and real-time tracking was started and continued until the end of treatment. Initial absolute 3D positions of fiducials were estimated from KV images. Fiducial positions in MV images subsequently acquired during beam delivery were compared with predicted positions based on Clarity estimated motion. RESULTS Phantom studies with motion amplitudes of ±1.5, ±3, ±6 mm in lateral direction and ±2 mm in longitudinal direction resulted in tracking errors of -0.03 ± 0.3, -0.04 ± 0.6, -0.2 ± 0.9 mm, respectively, in lateral direction and -0.05 ± 0.30 mm in longitudinal direction. In phantom, measured and predicted fiducial positions in MV images were within 0.1 ± 0.6 mm. Four patients consented to participate in the study and data was acquired over a total of 140 fractions. MV imaging tracking was possible in about 75% of the time (due to occlusion of fiducials) compared to 100% with Clarity. Overall range of estimated motion by Clarity was 0 to 4.0 mm. In-vivo fiducial localization error was 1.2 ± 1.0 mm compared to 1.8 ± 1.9 mm if not taking Clarity estimated motion into account. CONCLUSION Real-time transperineal ultrasound tracking reduces uncertainty in prostate position due to intrafractional motion. Research was supported by Elekta.


Medical Physics | 2015

Development of an accurate EPID-based output measurement and dosimetric verification tool for electron beam therapy

A Ding; Lei Xing; B Han

PURPOSE To develop an efficient and robust tool for output measurement and absolute dose verification of electron beam therapy by using a high spatial-resolution and high frame-rate amorphous silicon flat panel electronic portal imaging device (EPID). METHODS The dosimetric characteristics of the EPID, including saturation, linearity, and ghosting effect, were first investigated on a Varian Clinac 21EX accelerator. The response kernels of the individual pixels of the EPID to all available electron energies (6, 9, 12, 16, and 20 MeV) were calculated by using Monte Carlo (MC) simulations, which formed the basis to deconvolve an EPID raw images to the incident electron fluence map. The two-dimensional (2D) dose distribution at reference depths in water was obtained by using the constructed fluence map with a MC simulated pencil beam kernel with consideration of the geometric and structural information of the EPID. Output factor measurements were carried out with the EPID at a nominal source-surface distance of 100 cm for 2 × 2, 3 × 3, 6 × 6, 10 × 10, and 15 × 15 cm(2) fields for all available electron energies, and the results were compared with that measured in a solid water phantom using film and a Farmer-type ion chamber. The dose distributions at a reference depth specific to each energy and the flatness and symmetry of the 10 × 10 cm(2) electron beam were also measured using EPID, and the results were compared with ion chamber array and water scan measurements. Finally, three patient cases with various field sizes and irregular cutout shapes were also investigated. RESULTS EPID-measured dose changed linearly with the monitor units and showed little ghosting effect for dose rate up to 600 MU/min. The flatness and symmetry measured with the EPID were found to be consistent with ion chamber array and water scan measurements. The EPID-measured output factors for standard square fields of 2 × 2, 3 × 3, 6 × 6, 10 × 10, 15 × 15 cm(2) agreed with film and ion chamber measurements. The average discrepancy between EPID and ion chamber/film measurements was 0.81% ± 0.60% (SD) and 1.34% ± 0.75%, respectively. For the three clinical cases, the difference in output between the EPID- and ion chamber array measured values was found to be 1.13% ± 0.11%, 0.54% ± 0.10%, and 0.74% ± 0.11%, respectively. Furthermore, the γ-index analysis showed an excellent agreement between the EPID- and ion chamber array measured dose distributions: 100% of the pixels passed the criteria of 3%/3 mm. When the γ-index was set to be 2%/2 mm, the pass rate was found to be 99.0% ± 0.07%, 98.2% ± 0.14%, and 100% for the three cases. CONCLUSIONS The EPID dosimetry system developed in this work provides an accurate and reliable tool for routine output measurement and dosimetric verification of electron beam therapy. Coupled with its portability and ease of use, the proposed system promises to replace the current film-based approach for fast and reliable assessment of small and irregular electron field dosimetry.

Collaboration


Dive into the B Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

L Wang

Stanford University

View shared research outputs
Top Co-Authors

Avatar

A Ding

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E Mok

Stanford University

View shared research outputs
Top Co-Authors

Avatar

Y Yang

Stanford University

View shared research outputs
Top Co-Authors

Avatar

K Bush

Stanford University

View shared research outputs
Top Co-Authors

Avatar

Albert C. Koong

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge