Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Heringstad is active.

Publication


Featured researches published by B. Heringstad.


Livestock Production Science | 2000

Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries.

B. Heringstad; G. Klemetsdal; John Ruane

Abstract The literature concerning selection for mastitis resistance in dairy cattle is reviewed and the reasons for including mastitis resistance in dairy cattle breeding programs are described. The current situation in Denmark, Finland, Norway and Sweden is described with emphasis on the data recording schemes and the choice of models used for breeding value estimation. The use of clinical mastitis data and somatic cell counts in selection for mastitis resistance as well as implications and prospects for the future are discussed.


Mammalian Genome | 2001

Quantitative trait loci affecting clinical mastitis and somatic cell count in dairy cattle

Helge Klungland; Ayman Mahmoud Sabry; B. Heringstad; Hanne Gro Olsen; Luis Gomez-Raya; Dag Inge Våge; Ingrid Olsaker; Jørgen Ødegård; G. Klemetsdal; Nina Schulman; Johanna Vilkki; John Ruane; Monica Aasland; Knut Rønningen; Sigbjørn Lien

Abstract. Norway has a field recording system for dairy cattle that includes recording of all veterinary treatments on an individual animal basis from 1978 onwards. Application of these data in a genome search for quantitative trait loci (QTL) verified genome-wise significant QTL affecting clinical mastitis on Chromosome (Chr) 6. Additional putative QTL for clinical mastitis were localized to Chrs. 3, 4, 14, and 27. The comprehensive field recording system includes information on somatic cell count as well. This trait is often used in selection against mastitis when direct information on clinical mastitis is not available. The absence of common QTL positions for the two traits in our study indicates that the use of somatic cell count data in QTL studies aimed for reducing the incidence of mastitis should be carefully evaluated.


Mammalian Genome | 2000

A primary screen of the bovine genome for quantitative trait loci affecting twinning rate

Sigbjørn Lien; Astrid Karlsen; G. Klemetsdal; Dag Inge Våge; Ingrid Olsaker; Helge Klungland; Monica Aasland; B. Heringstad; John Ruane; Luis Gomez-Raya

Abstract. An autosomal genome scan for quantitative trait loci (QTL) affecting twinning rate was carried out in the Norwegian Cattle population. Suggestive QTL were detected on Chromosomes (Chr) 5, 7, 12, and 23. Among these, the QTL positions on both Chr 5 and Chr 23 are strongly supported by literature in the field. Our results also confirm previous mapping of a QTL for twinning to Chr 7, but definitely suggest a different location of the QTL on this chromosome. The most convincing QTL peak was observed for a region in the middle part of Chr 5 close to the insulin-like growth factor 1 (IGF1) gene. Since IGF1 plays an important role in the regulation of folliculogenesis, a mutation search was performed by sequencing more than 3.5 kb of the gene in actual families. The sequencing revealed three polymorphisms in noncoding regions of the gene that will be important in fine structure mapping and characterization of the QTL.


Animal | 2015

Invited review: overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits

C. Egger-Danner; J.B. Cole; J.E. Pryce; Nicolas Gengler; B. Heringstad; Andrew J. Bradley; K.F. Stock

For several decades, breeding goals in dairy cattle focussed on increased milk production. However, many functional traits have negative genetic correlations with milk yield, and reductions in genetic merit for health and fitness have been observed. Herd management has been challenged to compensate for these effects and to balance fertility, udder health and metabolic diseases against increased production to maximize profit without compromising welfare. Functional traits, such as direct information on cow health, have also become more important because of growing concern about animal well-being and consumer demands for healthy and natural products. There are major concerns about the impact of drugs used in veterinary medicine on the spread of antibiotic-resistant strains of bacteria that can negatively impact human health. Sustainability and efficiency are also increasingly important because of the growing competition for high-quality, plant-based sources of energy and protein. Disruptions to global environments because of climate change may encourage yet more emphasis on these traits. To be successful, it is vital that there be a balance between the effort required for data recording and subsequent benefits. The motivation of farmers and other stakeholders involved in documentation and recording is essential to ensure good data quality. To keep labour costs reasonable, existing data sources should be used as much as possible. Examples include the use of milk composition data to provide additional information about the metabolic status or energy balance of the animals. Recent advances in the use of mid-infrared spectroscopy to measure milk have shown considerable promise, and may provide cost-effective alternative phenotypes for difficult or expensive-to-measure traits, such as feed efficiency. There are other valuable data sources in countries that have compulsory documentation of veterinary treatments and drug use. Additional sources of data outside of the farm include, for example, slaughter houses (meat composition and quality) and veterinary labs (specific pathogens, viral loads). At the farm level, many data are available from automated and semi-automated milking and management systems. Electronic devices measuring physiological status or activity parameters can be used to predict events such as oestrus, and also behavioural traits. Challenges concerning the predictive biology of indicator traits or standardization need to be solved. To develop effective selection programmes for new traits, the development of large databases is necessary so that high-reliability breeding values can be estimated. For expensive-to-record traits, extensive phenotyping in combination with genotyping of females is a possibility.


Journal of Dairy Science | 2009

Assessment of Poisson, logit, and linear models for genetic analysis of clinical mastitis in Norwegian Red cows

Ana I. Vazquez; Daniel Gianola; D.M. Bates; K.A. Weigel; B. Heringstad

Clinical mastitis is typically coded as presence/absence during some period of exposure, and records are analyzed with linear or binary data models. Because presence includes cows with multiple episodes, there is loss of information when a count is treated as a binary response. The Poisson model is designed for counting random variables, and although it is used extensively in epidemiology of mastitis, it has rarely been used for studying the genetics of mastitis. Many models have been proposed for genetic analysis of mastitis, but they have not been formally compared. The main goal of this study was to compare linear (Gaussian), Bernoulli (with logit link), and Poisson models for the purpose of genetic evaluation of sires for mastitis in dairy cattle. The response variables were clinical mastitis (CM; 0, 1) and number of CM cases (NCM; 0, 1, 2, ..). Data consisted of records on 36,178 first-lactation daughters of 245 Norwegian Red sires distributed over 5,286 herds. Predictive ability of models was assessed via a 3-fold cross-validation using mean squared error of prediction (MSEP) as the end-point. Between-sire variance estimates for NCM were 0.065 in Poisson and 0.007 in the linear model. For CM the between-sire variance was 0.093 in logit and 0.003 in the linear model. The ratio between herd and sire variances for the models with NCM response was 4.6 and 3.5 for Poisson and linear, respectively, and for model for CM was 3.7 in both logit and linear models. The MSEP for all cows was similar. However, within healthy animals, MSEP was 0.085 (Poisson), 0.090 (linear for NCM), 0.053 (logit), and 0.056 (linear for CM). For mastitic animals the MSEP values were 1.206 (Poisson), 1.185 (linear for NCM response), 1.333 (logit), and 1.319 (linear for CM response). The models for count variables had a better performance when predicting diseased animals and also had a similar performance between them. Logit and linear models for CM had better predictive ability for healthy cows and had a similar performance between them.


Journal of Dairy Science | 2012

Early lactation feed intake and milk yield responses of dairy cows offered grass silages harvested at early maturity stages

Åshild Taksdal Randby; M.R. Weisbjerg; P. Nørgaard; B. Heringstad

The main objective was to evaluate the potential of grass silages of very high quality to support a high milk yield with a low or moderate, or even without concentrate supplementation. Production responses to increased levels of concentrate supplementation with 3 primary growth grass silages differing in digestibility were studied using 66 Norwegian Red dairy cows. Roundbale silage was produced from a timothy-dominated sward at very early (H1), early (H2), and normal (H3) stages of crop maturity. Crops were rapidly wilted (<24h) and a formic acid-based additive was applied. All silages were restrictedly fermented. Silage digestible organic matter in dry matter (DM) values were 747, 708, and 647 g/kg of DM for H1, H2, and H3, respectively. Dietary treatments were fed in a 3×3 factorial arrangement of the 3 silages supplemented with 3 concentrate levels (4, 8, and 12 kg/d) and, additionally, H1 was offered without concentrates and H3 with 16 kg/d, giving a total of 11 diets. Cows, blocked according to parity and calving date, were introduced to the experiment before calving and kept in the experiment until wk 16 of lactation. Silage was offered ad libitum in loose housing and concentrate was available in automatic feed stations. Intake of grass silage when fed as the sole feed was 16.9 kg of DM on average for lactation wk 1 to 16. When H1 was supplemented with 4 or 8 kg of concentrates, silage DM intake did not change, but total DM intake increased to 20.6 and 23.7 kg/d, respectively. Energy-corrected milk (ECM) yield increased from 23.4 kg when H1 was offered without concentrate supplement to 29.1 and 32.8 kg when supplemented with 4 or 8 kg concentrate, respectively. None of the other diets equaled the yield obtained by H1 plus 8 kg of concentrate. Feed intake and yield of cows offered H3 plus 4 kg of concentrates were strongly constrained by high dietary fiber concentration. They consumed 16.5 g of neutral detergent fiber/kg of body weight and spent more time eating silage than cows offered other diets. The highest concentrate level within each silage quality produced similar or lower ECM yield than that with 4 kg less concentrates. The obtained milk yield responses suggest that provision of 8.0, 8.4, and 11.5 kg of concentrates to H1, H2, and H3, respectively, would maximize ECM yield within each silage type. However, H1 may successfully be used with less concentrates, or even without, if future conditions should limit the amount of concentrates available for ruminant production.


Journal of Dairy Science | 2008

Genetic Relationship Between Culling, Milk Production, Fertility, and Health Traits in Norwegian Red Cows

M. Holtsmark; B. Heringstad; P. Madsen; Jørgen Ødegård

First-lactation records on 836,452 daughters of 3,064 Norwegian Red sires were used to examine associations between culling in first lactation and 305-d protein yield, susceptibility to clinical mastitis, lactation mean somatic cell score (SCS), nonreturn rate within 56 d in heifers and primiparous cows, and interval from calving to first insemination. A Bayesian multivariate threshold-linear model was used for analysis. Posterior mean of heritability of liability to culling of primiparous cows was 0.04. The posterior means of the genetic correlations between culling and the other traits were -0.41 to 305-d protein yield, 0.20 to lactation mean SCS, 0.36 to clinical mastitis, 0.15 to interval from calving to first insemination, -0.11 to 56-d nonreturn as heifer, and -0.04 to 56-d nonreturn as primiparous cow. As much as 66% of the genetic variation in culling was explained by genetic variation in protein yield, clinical mastitis, interval of calving to first insemination, and 56-d nonreturn in heifers, whereas contribution from the SCS and 56-d nonreturn as primiparous cow was negligible, after taking the other traits into account. This implies that for breeds selected for a broad breeding goal, including functional traits such as health and fertility, most of the genetic variation in culling will probably be covered by other traits in the breeding goal. However, in populations where data on health and fertility is scarce or not available at all, selection against early culling may be useful in indirect selection for improved health and fertility. Regression of average sire posterior mean on birth-year of the sire indicate a genetic change equivalent to an annual decrease of the probability of culling in first-lactation Norwegian Red cattle by 0.2 percentage units. This genetic improvement is most likely a result of simultaneous selection for improved milk yield, health, and fertility over the last decades.


Journal of Dairy Science | 2010

Genetic analysis of clinical mastitis and somatic cell count traits in Austrian Fleckvieh cows

A. Koeck; B. Heringstad; C. Egger-Danner; C. Fuerst; P. Winter; Birgit Fuerst-Waltl

The objectives of this study were to investigate genetic associations between clinical mastitis (CM) and different somatic cell count traits, and to examine their relationships, in terms of estimated breeding values, with other traits that are routinely evaluated in Austrian Fleckvieh dual-purpose cows. Records on veterinary treatments of CM were available from the Austrian health-monitoring project. For CM, 3 intervals in early lactation were considered: -10 to 50 d, 51 to 150 d, and -10 to 150 d after calving. Within each interval, absence or presence of CM was scored as 1 or 0 based on whether or not the cow had recorded at least one veterinary treatment of CM. The average somatic cell score of the first 2 test-days after calving was defined as early lactation average somatic cell score, and lactation mean somatic cell score was the average of all test-day somatic cell scores from 8 to 305 d after calving. Subclinical mastitis was expressed as a binary trait based on prolonged elevated somatic cell counts. If somatic cell counts on 3 consecutive test-days in the interval from 8 to 305 d after calving were above 200,000 cells/mL, the binary variable subclinical mastitis was defined as 1 and otherwise 0. Records of Austrian Fleckvieh cows, with calving from January 1, 2007, to February 28, 2009, were analyzed using univariate and bivariate sire models. Threshold liability models were applied for binary traits, and Gaussian models were used for early lactation average somatic cell score and lactation mean somatic cell score. A Bayesian approach using Gibbs sampling was applied for genetic analyses. Posterior means of heritability of liability to CM were 0.06 and 0.02 in the first and second interval, respectively, and 0.05 in the full period (-10 to 150 d). Heritability estimates of somatic cell count traits were higher (0.09 to 0.13). The posterior mean of the genetic correlation between CM in lactation period 1 (-10 to 50 d after calving) and 2 (51 to 150 d after calving) was close to unity. Posterior means of genetic correlations between CM and somatic cell count traits ranged from 0.64 to 0.77. Because CM and somatic cell count describe different aspects of udder health, information on both traits should be considered for selection of bulls. Correlations of sire breeding values revealed that especially the udder conformation trait udder depth may be useful as additional information to reduce both CM and somatic cell count.


Journal of Dairy Science | 2010

Genetic analysis of fertility-related diseases and disorders in Norwegian Red cows

B. Heringstad

Heritability of and genetic correlations among silent heat (SH), cystic ovaries (CO), metritis (MET), and retained placenta (RP) were inferred. These traits were chosen because they are the 4 most frequent fertility-related diseases and disorders among first-lactation cows in Norway. Records of 503,683 first-lactation daughters of 1,058 Norwegian Red sires with first calving from 2000 through 2006 were analyzed with a 4-variate threshold sire model. Presence or absence of each of the 4 diseases was scored as 1 or 0 based on whether or not the cow had at least 1 veterinary treatment for the disease. The mean frequency was 3.1% for SH, 0.9% for MET, 0.5% for CO, and 1.5% for RP. The model for liability had effects of age at calving and of month-year of calving, herd, sire of the cow, and a residual. Posterior mean (SD) of heritability of liability was 0.06 (0.01) for SH, 0.03 (0.01) for MET, 0.07 (0.01) for CO, and 0.06 (0.01) for RP. The genetic correlation between MET and RP was strong, with posterior mean (SD) 0.64 (0.10). A negative genetic correlation (-0.26) was found between RP and CO. The posterior distributions of the other genetic correlations included zero with high density, and could not be considered different from zero. The frequency of fertility-related diseases and disorders is very low in the Norwegian Red population at present, so there is limited scope for genetic improvement. However, this study indicates that reasonably precise genetic evaluation of sires is feasible for these traits given information from large daughter groups.


Journal of Dairy Science | 2009

Inferring relationships between health and fertility in Norwegian Red cows using recursive models

B. Heringstad; Xiao-Lin Wu; Daniel Gianola

Health and fertility are complex traits, and the phenotype for one trait may affect the phenotype of one or more other traits. For instance, disease in early lactation may impair a cows ability to show estrus and to conceive after insemination. The objectives of the present study were to explore phenotypic and genetic relationships among health and fertility traits in Norwegian Red cows using a recursive effects model, which allows disentangling causal effects of phenotypes from the genetic and environmental correlations among traits. Records of interval from calving to first insemination (CFI), nonreturn rate within 56 d after first insemination (NR56), clinical mastitis (CM), ketosis (KET), and retained placenta from 55,568 first-lactation daughters of 1,577 Norwegian Red sires were analyzed. Trivariate recursive Gaussian-threshold models were used to analyze the 2 fertility traits (CFI and NR56) together with 1 disease trait in each analysis. The estimated structural coefficients of the recursive models imply that presence of KET or retained placenta lengthened CFI, whereas causal effects from CM to fertility were negligible. Recursive effects of disease on NR56, and of CFI on NR56, were all close to zero. Genetic correlations between health and fertility traits were low or moderate. The strongest genetic correlation was between KET and CFI (0.29), whereas genetic correlations between CM and NR56 and between CFI and NR56 were nil. In general, selection against disease is expected to slightly improve fertility (shorter CFI and higher NR56) as a correlated response and vice versa. The present results suggest that the use of structural-equation models, such as the one used here, may enhance our understanding of complex relationships among traits.

Collaboration


Dive into the B. Heringstad's collaboration.

Top Co-Authors

Avatar

G. Klemetsdal

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Daniel Gianola

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jørgen Ødegård

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Morten Svendsen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Y.M. Chang

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.B. Cole

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Ingrid Olsaker

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge