Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Hillebrands is active.

Publication


Featured researches published by B. Hillebrands.


Applied Physics Letters | 2008

Realization of spin-wave logic gates

T. Schneider; A. A. Serga; B. Leven; B. Hillebrands; R. L. Stamps; Mikhail Kostylev

We demonstrate the functionality of spin-wave logic exclusive-not-OR and not-AND gates based on a Mach-Zehnder-type interferometer which has arms implemented as sections of ferrite film spin-wave waveguides. Logical input signals are applied to the gates by varying either the phase or the amplitude of the spin waves in the interferometer arms. This phase or amplitude variation is produced by Oersted fields of dc current pulses through conductors placed on the surface of the magnetic films.


Applied Physics Letters | 2009

Improvement of structural, electronic, and magnetic properties of Co2MnSi thin films by He+ irradiation

O. Gaier; J. Hamrle; B. Hillebrands; M. Kallmayer; P. Pörsch; G. Schönhense; H. J. Elmers; J. Fassbender; A. Gloskovskii; Catherine A. Jenkins; Claudia Felser; Eiji Ikenaga; Y. Sakuraba; Sumito Tsunegi; Mikihiko Oogane; Yasuo Ando

The influence of 30 keV He+ ion irradiation on structural, electronic, and magnetic properties of Co2MnSi thin films with a partial B2 order was investigated. It was found that room temperature irradiation with light ions can improve the local chemical order. This provokes changes of the electronic structure and element-specific magnetization toward the bulk properties of a well-ordered Co2MnSi Heusler compound.


Nature | 2006

Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping

S. O. Demokritov; V. E. Demidov; O. Dzyapko; G. A. Melkov; A. A. Serga; B. Hillebrands; A. N. Slavin

Bose–Einstein condensation is one of the most fascinating phenomena predicted by quantum mechanics. It involves the formation of a collective quantum state composed of identical particles with integer angular momentum (bosons), if the particle density exceeds a critical value. To achieve Bose–Einstein condensation, one can either decrease the temperature or increase the density of bosons. It has been predicted that a quasi-equilibrium system of bosons could undergo Bose–Einstein condensation even at relatively high temperatures, if the flow rate of energy pumped into the system exceeds a critical value. Here we report the observation of Bose–Einstein condensation in a gas of magnons at room temperature. Magnons are the quanta of magnetic excitations in a magnetically ordered ensemble of magnetic moments. In thermal equilibrium, they can be described by Bose–Einstein statistics with zero chemical potential and a temperature-dependent density. In the experiments presented here, we show that by using a technique of microwave pumping it is possible to excite additional magnons and to create a gas of quasi-equilibrium magnons with a non-zero chemical potential. With increasing pumping intensity, the chemical potential reaches the energy of the lowest magnon state, and a Bose condensate of magnons is formed.


Applied Physics Letters | 2005

Spin-wave logical gates

Mikhail Kostylev; A. A. Serga; T. Schneider; B. Leven; B. Hillebrands

A universal approach to spin-wave logic gates is presented. The feasibility of a spin-wave based NOT gate has been demonstrated experimentally. We propose to use a Mach–Zender-type current-controlled interferometer based on spin-wave propagation in a ferromagnetic film to construct logical gates. We investigate the performance of the main element of such interferometric logical gates—the controlled phase shifter implemented as a spin-wave device.


Nature Communications | 2014

Magnon transistor for all-magnon data processing

Andrii V. Chumak; A. A. Serga; B. Hillebrands

An attractive direction in next-generation information processing is the development of systems employing particles or quasiparticles other than electrons—ideally with low dissipation—as information carriers. One such candidate is the magnon: the quasiparticle associated with the eigen-excitations of magnetic materials known as spin waves. The realization of single-chip all-magnon information systems demands the development of circuits in which magnon currents can be manipulated by magnons themselves. Using a magnonic crystal—an artificial magnetic material—to enhance nonlinear magnon–magnon interactions, we have succeeded in the realization of magnon-by-magnon control, and the development of a magnon transistor. We present a proof of concept three-terminal device fabricated from an electrically insulating magnetic material. We demonstrate that the density of magnons flowing from the transistor’s source to its drain can be decreased three orders of magnitude by the injection of magnons into the transistor’s gate.


Journal of Physics D | 2014

The 2014 Magnetism Roadmap

R. L. Stamps; Stephan Breitkreutz; Johan Åkerman; Andrii V. Chumak; Y. Otani; Gerrit E. W. Bauer; Jan-Ulrich Thiele; M. Bowen; Sara A. Majetich; Mathias Kläui; Ioan Lucian Prejbeanu; B. Dieny; Nora Dempsey; B. Hillebrands

Magnetism is a very fascinating and dynamic field. Especially in the last 30 years it has experienced many major advances in the full range from novel fundamental phenomena to new products. Applications such as hard disk drives and magnetic sensors are part of our daily life, and new applications, such as in non-volatile computer random access memory, are expected to surface shortly. Thus it is timely for describing the current status, and current and future challenges in the form of a Roadmap article. This 2014 Magnetism Roadmap provides a view on several selected, currently very active innovative developments. It consists of 12 sections, each written by an expert in the field and addressing a specific subject, with strong emphasize on future potential. This Roadmap cannot cover the entire field. We have selected several highly relevant areas without attempting to provide a full review - a future update will have room for more topics. The scope covers mostly nano-magnetic phenomena and applications, where surfaces and interfaces provide additional functionality. New developments in fundamental topics such as interacting nano-elements, novel magnon-based spintronics concepts, spin-orbit torques and spin-caloric phenomena are addressed. New materials, such as organic magnetic materials and permanent magnets are covered. New applications are presented such as nano-magnetic logic, non-local and domain-wall based devices, heat-assisted magnetic recording, magnetic random access memory, and applications in biotechnology. May the Roadmap serve as a guideline for future emerging research directions in modern magnetism.


Physical Review Letters | 2011

Spin Pumping by Parametrically Excited Exchange Magnons

C. W. Sandweg; Y. Kajiwara; A. V. Chumak; A. A. Serga; Vitaliy I. Vasyuchka; Matthias B. Jungfleisch; Eiji Saitoh; B. Hillebrands

We experimentally show that exchange magnons can be detected by using a combination of spin pumping and the inverse spin-Hall effect proving its wavelength integrating capability down to the submicrometer scale. The magnons were injected in a ferrite yttrium iron garnet film by parametric pumping and the inverse spin-Hall effect voltage was detected in an attached Pt layer. The role of the density, wavelength, and spatial localization of the magnons for the spin pumping efficiency is revealed.


Nature Communications | 2014

Realization of a spin-wave multiplexer

K. Vogt; F.Y. Fradin; J. Pearson; T. Sebastian; S. D. Bader; B. Hillebrands; A. Hoffmann; Helmut Schultheiss

Recent developments in the field of spin dynamics--like the interaction of charge and heat currents with magnons, the quasi-particles of spin waves--opens the perspective for novel information processing concepts and potential applications purely based on magnons without the need of charge transport. The challenges related to the realization of advanced concepts are the spin-wave transport in two-dimensional structures and the transfer of existing demonstrators to the micro- or even nanoscale. Here we present the experimental realization of a microstructured spin-wave multiplexer as a fundamental building block of a magnon-based logic. Our concept relies on the generation of local Oersted fields to control the magnetization configuration as well as the spin-wave dispersion relation to steer the spin-wave propagation in a Y-shaped structure. Thus, the present work illustrates unique features of magnonic transport as well as their possible utilization for potential technical applications.


Applied Physics Letters | 2008

Scattering of backward spin waves in a one-dimensional magnonic crystal

A. V. Chumak; A. A. Serga; B. Hillebrands; Mikhail Kostylev

Scattering of backward volume magnetostatic spin waves from a one-dimensional magnonic crystal, realized by a grating of shallow grooves etched into the surface of an yttrium iron garnet film, was experimentally studied. Rejection frequency bands were clearly observed. The rejection efficiency and the frequency width of the rejection bands increase with increasing groove depth. A theoretical model based on the analogy of a spin-wave film waveguide with a microwave transmission line was used to interpret the obtained experimental results.


Physical Review Letters | 2003

Phase coherent precessional magnetization reversal in microscopic spin valve elements

H. W. Schumacher; C. Chappert; P. Crozat; R. C. Sousa; Paulo P. Freitas; J. Miltat; J. Fassbender; B. Hillebrands

We evidence multiple coherent precessional magnetization reversal in microscopic spin valves. Stable, reversible, and highly efficient magnetization switching is triggered by transverse field pulses as short as 140 ps with energies down to 15 pJ. At high fields a phase coherent reversal is found revealing periodic transitions from switching to nonswitching under variation of pulse parameters. At the low field limit the existence of a relaxation dominated regime is established allowing switching by pulse amplitudes below the quasistatic switching threshold.

Collaboration


Dive into the B. Hillebrands's collaboration.

Top Co-Authors

Avatar

A. A. Serga

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Fassbender

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Pirro

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

A. N. Slavin

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Andrii V. Chumak

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mikhail Kostylev

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

B. Leven

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

T. Brächer

Kaiserslautern University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge