Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. J. Allan is active.

Publication


Featured researches published by B. J. Allan.


Geophysical Research Letters | 1999

On the photochemical production of new particles in the coastal boundary layer

Colin D. O'Dowd; Gordon McFiggans; D. J. Creasey; Liisa Pirjola; Claudia Hoell; Michael H. Smith; B. J. Allan; John M. C. Plane; Dwayne E. Heard; James Lee; Michael J. Pilling; Markku Kulmala

Concurrent measurements of ultra-fine (r<5 nm) particle (UFP) formation, OH and SO2 concentrations in the coastal environment are examined to further elucidate the processes leading to tidal-related homogeneous heteromolecular nucleation. During almost daily nucleation events, UFP concentration approached ≈300,000 cm−3 under conditions of solar radiation and low tide. Simultaneous measurements of OH illustrate that, as well as occurring during low tide, these events occur during conditions of peak OH concentration, suggesting that at least one of the nucleating species is photochemically produced. Derived H2SO4 production also exhibited remarkable coherence, although phase-lagged, with UFP formation, thus suggesting its involvement, although binary nucleation of H2SO4 and H2O can be ruled out as a plausible mechanism. Ternary nucleation involving NH3 seems most likely as a trigger mechanism, however, at least a fourth condensable species, X, is required for growth to detectable sizes. Since UFP are only observed during low tide events, it is thought that species X, or its parent, is emitted from the shore biota - without which, no nucleation is detected. Species X remains to be identified. Model simulations indicate that, in order to reproduce the observations, a nucleation rate of 107 cm−3 s−1, and a condensable vapour concentration of 5 × 107 cm−3, are required.


Journal of Geophysical Research | 2000

A modeling study of iodine chemistry in the marine boundary layer

Gordon McFiggans; John M. C. Plane; B. J. Allan; Lucy J. Carpenter; Hugh Coe; Colin D. O'Dowd

An observationally constrained photochemical box model has been developed to investigate the atmospheric chemistry of iodine in the marine boundary layer, motivated by recent measurements of the iodine monoxide (IO) radical (Allan et al., this issue). Good agreement with the time series of IO measured at a midlatitude coastal station was achieved by using a reaction scheme that included recycling of iodine through marine aerosol. The strong diurnal variation in IO observed in the subtropical Atlantic was satisfactorily modeled by assuming a constant concentration of iodocarbons that photolyzed to produce roughly 1×104 iodine atoms cm−3 s−1 at midday. The significance of the occurrence of IO at concentrations of up to 4 parts per trillion in the marine boundary layer was then considered from three angles. First, the iodine-catalyzed destruction of ozone was shown to be of a magnitude similar to that caused by odd-hydrogen photochemistry, with up to 13% of the available ozone destroyed per day in a marine air mass. Second, the enrichment factor of iodine in marine aerosol compared with surface seawater was predicted to increase to values of several thousand, in sensible accord with observations. Most of the enrichment should be due to the accumulation of iodate, although other iodine species may also be present, depending on the rate of aerosol recycling. Third, the denoxification of the marine boundary layer was found to be significantly enhanced as a result of aerosol uptake of IONO2, formed from the recombination of IO with NO2.


Journal of Geophysical Research | 2000

Observations of iodine monoxide in the remote marine boundary layer

B. J. Allan; Gordon McFiggans; John M. C. Plane; Hugh Coe

We report measurements of the iodine monoxide (IO) radical in the marine boundary layer at three remote sites: Mace Head (Ireland), Tenerife (Canary Islands), and Cape Grim (Tasmania). IO was observed by long-path differential optical absorption spectroscopy using the A(2)Pi(3/2)-X(2)Pi(3/2) electronic transition between 415 and 450 nm. The daytime IO concentration at these three locations was found to vary from below the detection limit (less than or equal to 0.2 parts per trillion (ppt)) to a maximum of 4 ppt, with an average of about 1 ppt, Of particular note is that the IO observed off the north coast of Tenerife, which is probably typical of the open ocean sub-tropical North Atlantic, exhibited a distinct diurnal cycle which correlated strongly with the solar actinic flux in the near UV. IO was also observed at Cape Grim to be present at much lower levels (approximate to 0.3 ppt) in westerly air from the Southern Ocean. As is shown in the companion paper (McFiggans et al., this issue), these measurements of IO are satisfactorily reproduced by a photochemical box model incorporating the recycling of iodine through marine aerosol. This model indicates that the direct iodine-catalyzed destruction of ozone in the boundary layer may well be similar to the losses caused by odd-hydrogen photochemistry and dry deposition. The significance of this work is that IO is probably present in much of the open ocean boundary layer, at levels where it may cause significant depletion of ozone.


Journal of Atmospheric Chemistry | 1999

Observations of the Nitrate Radical in the Marine Boundary Layer

B. J. Allan; N. Carslaw; Hugh Coe; R. A. Burgess; John M. C. Plane

A study of the nitrate radical (NO3) has been conducted through a series of campaigns held at the Weybourne Atmospheric Observatory, located on the coast of north Norfolk, England. The NO3 concentration was measured in the lower boundary layer by the technique of differential optical absorption spectroscopy (DOAS). Although the set of observations is limited, seasonal patterns are apparent. In winter, the NO3 concentration in semi-polluted continental air masses was found to be of the order of 10 ppt, with an average turnover lifetime of 2.4 minutes. During summer in clean northerly air flows, the concentration was about 6 ppt with a lifetime of 7.2 minutes. The major loss mechanisms for the radical were investigated in some detail by employing a chemical box model, constrained by a suite of ancillary measurements. The model indicates that during the semi-polluted conditions experienced in winter, the major loss of NO3 occurred indirectly through reactions of N2O5, either in the gas-phase with H2O, or through uptake on aerosols. The most important direct loss was via reactions of NO3 with a number of unsaturated nonmethane hydrocarbons. The cleaner air masses observed during the summer were of marine origin and contained elevated concentrations of dimethyl sulfide (DMS), which provided the major loss route for NO3. The box model was then used to investigate the conditions in the remote marine boundary layer under which DMS will be oxidised more rapidly at night (by NO3) than during the day (by OH). This should occur if the concentration of NO2 is more than about 60% that of DMS.


Journal of Geophysical Research | 1997

Simultaneous observations of nitrate and peroxy radicals in the marine boundary layer

Nicola Carslaw; Lucy J. Carpenter; John M. C. Plane; B. J. Allan; R. A. Burgess; Kevin C. Clemitshaw; Hugh Coe; S. A. Penkett

This paper describes the most extensive set of simultaneous measurements of the concentrations of nitrate (NO3) and peroxy (sum of HO2 + RO2, R = alkyl and acyl) radicals to date. The measurements were made in the coastal marine boundary layer over the North Sea, at the Weybourne Atmospheric Observatory on the North Norfolk coast during the spring and autumn of 1994. In spring the average nighttime concentration of NO3 measured by differential optical absorption spectroscopy, was about 10 parts per trillion (ppt) (maximum 25 ppt). The corresponding peroxy radical concentration, measured by the chemical amplifier technique, averaged about 2 ppt (maximum 6 ppt), although this is likely to be an underestimate of the total radical concentration. There is a significant positive correlation between the two sets of radicals, which has not been reported previously. A box model of the marine boundary layer is used to show that this correlation arises from the processing of reactive organic species by NO3. During spring the relatively long lifetime of NO3 (up to 18 min) at night is controlled by reaction with dimethyl sulfide (DMS), and the model predicts significant production of HNO3, methyl tiomethylen (CH3SCH2O2) and other peroxy radicals, HCHO, and eventually sulfate. A nighttime production rate for the hydroxyl (OH) of about 2 x 10(4) molecules cm(-3) s(-1) is estimated. During one night in autumn the NO3 lifetime of about 3 min is too short to be explained by reaction with unsaturated hydrocarbons, but is satisfactorily accounted for by the heterogeneous loss of N2O5 on deliquesced aerosols in relatively polluted conditions.


Journal of Geophysical Research | 2001

Production of peroxy radicals at night via reactions of ozone and the nitrate radical in the marine boundary layer

G. Salisbury; Andrew R. Rickard; Paul S. Monks; B. J. Allan; S. J.-B. Bauguitte; S. A. Penkett; Nicola Carslaw; Alastair C. Lewis; D. J. Creasey; Dwayne E. Heard; P. J. Jacobs; James Lee

In this paper, a substantial set of simultaneous measurements of the sum of peroxy radicals, [HO2 + RO2], NO3, hydrocarbons (HCs), and ozone, taken at Mace Head on the Atlantic coast of Ireland in spring 1997, is presented. Conditions encountered during the experiment ranged from semipolluted air masses advected from Britain and continental Europe to clean air masses off the North and mid-Atlantic, where mixing ratios of pollution tracers approached Northern Hemispheric background mixing ratios. Average mixing ratios of peroxy radicals varied from 2.5 to 5.5 parts per trillion by volume (pptv) at night depending on wind sector, and were observed to decay only very slowly from late afternoon to early morning (0.1–0.5 pptv h−1). Measurements of OH and HO2 on two nights using the Fluorescence Assay by Gas Expansion (FAGE) technique give an upper limit for [OH] of 2.5×105 molecules cm−3 and an average upper limit [HO2]/[HO2 + RO2] ratio of 0.27. A modeling study of the 1/e lifetimes of the peroxy radicals, assuming no radical production at night, yielded mean lifetimes of between ∼8–23 min for HO2 and 3–18 min for CH3O2. Given these lifetimes, it may be concluded that the peroxy-radical mixing ratios observed could not be maintained without substantial production at night. No significant correlation is observed between measured [HO2 + RO2] and [NO3] under any conditions. Calculation of the reaction rates for ozone and NO3 with hydrocarbons (HCs) shows that the ozone-initiated oxidation routes of HCs outweighed those of NO3 in the NE, SE and NW wind sectors. In the SW sector, however, the two mechanisms operated at similar rates on average, and oxidation by NO3 was the dominant route in the westerly sector. The oxidation of alkenes at night by ozone was greater by a factor of 4 than that by NO3 over the whole data set. The HC degradation rates from the three “westerly” sectors, where tracer mixing ratios were relatively low, may be representative of the nighttime oxidative capacity of the marine boundary layer throughout the background Northern Hemisphere. Further calculations using literature values for OH yields and inferred RO2 yields from the ozone-alkene reactions show that peroxy radicals derived from the ozone reactions were likely to make up the major part of the peroxy-radical signal at night (mean value 66%). However, the NO3 source was of similar magnitude in the middle of the night, when [NO3] was generally at its maximum. The estimated total rates of formation of peroxy radicals are much higher under semipolluted conditions (mean 8.0×104 molecules cm−3 s−1 in the SE wind sector) than under cleaner conditions (mean 2.4×104 molecules cm−3 s−1 in the westerly wind sector). A model study using a campaign-tailored box model (CTBM) for semipolluted conditions shows that the major primary sources of OH, HO2, and CH3O2 (the most abundant organic peroxy radical) were the Criegee biradical intermediates formed in the reactions of ozone with alkenes.


Journal of Geophysical Research | 2000

The nitrate radical in the remote marine boundary layer

B. J. Allan; Gordon McFiggans; John M. C. Plane; Hugh Coe; Gordon G. McFadyen

The technique of differential optical absorption spectroscopy has been used to determine the nitrate radical (NO3) concentration in the remote marine boundary layer. The instrument was deployed in campaigns at Mace Head on the west coast of Ireland and on the north coast of Tenerife. A comprehensive set of NO3 measurements under a wide variety of conditions was obtained. For instance, nighttime NO3 levels at Mace Head ranged from 1 to 5 ppt in the clean marine atmosphere and from 1 to 40 ppt in semipolluted continental air masses. The nightly averaged NO3 lifetime varied from less than 2 min to 4 hours. At Tenerife, where there was less variability in conditions, nighttime NO3 ranged from 1 to 20 ppt, with nightly averaged lifetimes between 4 and 34 min. A photochemical box model, fully constrained by measurements of species that control the formation and removal of NO3, was then employed to determine the major loss mechanisms of the radical. This shows that NO3 in the clean marine air masses is very sensitive to small increases in the concentrations of dimethyl sulphide (DMS) and nonmethane hydrocarbons and that the radical is rarely in chemical steady state. At Tenerife, 80 - 90% of NO3 was removed by reaction with DMS. However, in continental air masses with little marine influence, indirect losses of NO3 via dinitrogen pentoxide (N2O5) usually dominate. It appears that in much of the North Atlantic, NO3 is a mote efficient sink for DMS compared to the hydroxyl radical (OH) during the day.


Journal of Atmospheric Chemistry | 2000

Intercomparison of Formaldehyde Measurements in Clean and Polluted Atmospheres

Laura Cardenas; D. J. Brassington; B. J. Allan; Hugh Coe; B. Alicke; U. Platt; K. M. Wilson; John M. C. Plane; S. A. Penkett

Three different techniques used tomeasure atmospheric formaldehyde were compared duringa field campaign carried out at a clean maritime siteon the West coast of Ireland. Two spectroscopictechniques Differential Optical AbsorptionSpectroscopy (DOAS) and Tunable Diode Laser AbsorptionSpectroscopy (TDLAS), together with a glass coil/Hantzschreaction/fluorescence technique, wereemployed for measurements of atmospheric formaldehydeof the order of a few hundred pptv. The betteragreement was observed between the fluorescence andDOAS instruments.Two DOAS instruments were compared to the glasscoil/Hantzsch reaction/fluorescence technique at asemi-polluted site on the North Norfolk coast, U.K.,where concentrations of formaldehyde were observed atlevels up to 4 ppbv. A very good agreement wasobserved between the two instruments.The glass coil/Hantzsch reaction/fluorescence and theTDLAS instruments were also deployed simultaneously inorder to measure indoor air inside a mobile laboratorylocated at the Imperial College Silwood Park site nearAscot, U.K. The doors of the mobile laboratory wereleft open in order to obtain the backgroundformaldehyde concentrations. Closing them afterwardsallowed us to observe the increase in concentrationsas a result of indoor emissions. The agreement betweenthe two instruments was outstanding (correlationcoefficient was 99%).The results from this study showed that of the fourinstruments included in this intercomparison the glasscoil/Hantzsch reaction/fluorescence technique provedthe most suitable for continuous measurements offormaldehyde in the background atmosphere.


Journal of Geophysical Research | 2000

Quasi‐Lagrangian investigation into dimethyl sulfide oxidation in maritime air using a combination of measurements and model

Jonathan James; Roy M. Harrison; N. H. Savage; A.G. Allen; J.L. Grenfell; B. J. Allan; John M. C. Plane; C. N. Hewitt; Brian Davison; L. Robertson

Using a combination of field measurement data and a modified photochemical box model, strong evidence is presented to suggest that the rate of daytime oxidation of dimethyl sulfide (DMS) by OH radicals is insufficient to describe the measured conversion. Quasi-Lagrangian measurements were made at two sites in the eastern Atlantic (Research Vessel and Mace Head Research Station, Ireland) as part of the Atmospheric Chemistry Studies in the Oceanic Environment (ACSOE) program. Periods of connected flow between the two sites were identified, air parcel transit times were estimated, and measurements of the main DMS oxidation products (MSA, SO2, and nss-SO4 2−) were compared with model predictions to establish whether the models chemical mechanism could account for observed changes. The main finding was that during daytime periods with maritime air masses, the model failed to predict a sufficient increase in DMS oxidation products during the estimated transit time. This was despite a tendency to overprediction of the progress of nitrogen chemistry during air mass advection, and independent checks on the model estimates of hydroxyl radical concentrations through measurements. In the light of this, the involvement of halogen species (most probably halogen oxides) or heterogeneous oxidation processes is tentatively suggested as the cause of enhanced daytime DMS oxidation in the marine boundary layer (MBL). Increasing the rate constant for the OH + DMS reaction by a factor of 3.3 (as a crude way of simulating parallel channels of DMS oxidation) permitted model results to reproduce the measurements very much more closely.


Journal of Geophysical Research | 2002

Retrieval of vertical profiles of NO3 from zenith sky measurements using an optimal estimation method

Hugh Coe; B. J. Allan; John M. C. Plane

The generic optimal estimation method (OEM) developed by Rodgers [1976, 1990, 2000] for solving atmospheric data inversion problems has been successfully developed to retrieve vertical profile information of NO3 from zenith sky spectroscopic measurements of column abundance made through sunrise. The technique has been shown to be robust and yields profile information to an altitude of 20 km. The rapid photolysis of NO3 at dawn ensures that a time series of column density measurements provides significant vertical information. The method has been extensively tested and a thorough error analysis was performed. The largest source of error arises from the undersampling of the column density through sunrise, the so-called smoothing error. The measurement errors and uncertainties in the forward model are also significant. Although a simple forward model involving only photolysis of NO3 during sunrise is able to successfully map the retrieved profile onto the column density measurements on some days, on other days systematic errors arise in the retrieval. These can be accounted for by either increased cloudiness or thermal decomposition of N2O5 in polluted boundary layer air, both effects extending the lifetime of NO3 through sunrise. The technique allows NO3 profile information to be retrieved in a variety of conditions over an extended period of time in a reliable and consistent manner.

Collaboration


Dive into the B. J. Allan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugh Coe

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. A. Burgess

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. A. Penkett

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Shillito

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge