Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. J. Shappee is active.

Publication


Featured researches published by B. J. Shappee.


Science | 2017

Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source

D. A. Coulter; Ryan J. Foley; Charles D. Kilpatrick; M. R. Drout; Anthony L. Piro; B. J. Shappee; M. R. Siebert; J. D. Simon; N. Ulloa; Daniel Kasen; Barry F. Madore; A. Murguia-Berthier; Y.-C. Pan; Jason X. Prochaska; Enrico Ramirez-Ruiz; A. Rest; C. Rojas-Bravo

Photons from a gravitational wave event Two neutron stars merging together generate a gravitational wave signal and have also been predicted to emit electromagnetic radiation. When the gravitational wave event GW170817 was detected, astronomers rushed to search for the source using conventional telescopes (see the Introduction by Smith). Coulter et al. describe how the One-Meter Two-Hemispheres (1M2H) collaboration was the first to locate the electromagnetic source. Drout et al. present the 1M2H measurements of its optical and infrared brightness, and Shappee et al. report their spectroscopy of the event, which is unlike previously detected astronomical transient sources. Kilpatrick et al. show how these observations can be explained by an explosion known as a kilonova, which produces large quantities of heavy elements in nuclear reactions. Science, this issue p. 1556, p. 1570, p. 1574, p. 1583; see also p. 1554 A rapid astronomical search located the optical counterpart of the neutron star merger GW170817. On 17 August 2017, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo interferometer detected gravitational waves (GWs) emanating from a binary neutron star merger, GW170817. Nearly simultaneously, the Fermi and INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) telescopes detected a gamma-ray transient, GRB 170817A. At 10.9 hours after the GW trigger, we discovered a transient and fading optical source, Swope Supernova Survey 2017a (SSS17a), coincident with GW170817. SSS17a is located in NGC 4993, an S0 galaxy at a distance of 40 megaparsecs. The precise location of GW170817 provides an opportunity to probe the nature of these cataclysmic events by combining electromagnetic and GW observations.


Monthly Notices of the Royal Astronomical Society | 2014

ASASSN-14ae: a tidal disruption event at 200 Mpc

T. W.-S. Holoien; Jose Luis Palacio Prieto; D. F. Bersier; C. S. Kochanek; K. Z. Stanek; B. J. Shappee; Dirk Grupe; U. Basu; John F. Beacom; J. Brimacombe; J. S. Brown; Ab Davis; J. Jencson; G. Pojmanski; D. M. Szczygieł

ASASSN-14ae is a candidate tidal disruption event (TDE) found at the centre of SDSS J110840.11+340552.2 (d ≃ 200 Mpc) by the All-Sky Automated Survey for Supernovae (ASAS-SN). We present ground-based and Swift follow-up photometric and spectroscopic observations of the source, finding that the transient had a peak luminosity of L ≃ 8 × 1043 erg s−1 and a total integrated energy of E ≃ 1.7 × 1050 erg radiated over the ∼5 months of observations presented. The blackbody temperature of the transient remains roughly constant at T ∼ 20 000 K while the luminosity declines by nearly 1.5 orders of magnitude during this time, a drop that is most consistent with an exponential, L ∝ e-t/t 0 with t0 ≃ 39 d. The source has broad Balmer lines in emission at all epochs as well as a broad He ii feature emerging in later epochs. We compare the colour and spectral evolution to both supernovae and normal AGN to show that ASASSN-14ae does not resemble either type of object and conclude that a TDE is the most likely explanation for our observations. At z = 0.0436, ASASSN-14ae is the lowest-redshift TDE candidate discovered at optical/UV wavelengths to date, and we estimate that ASAS-SN may discover 0.1–3 of these events every year in the future.


The Astrophysical Journal | 2013

The structure of the broad-line region in active galactic nuclei. I. Reconstructed velocity-delay maps

C. J. Grier; Bradley M. Peterson; K. Horne; Misty C. Bentz; Richard W. Pogge; K. D. Denney; G. De Rosa; Paul Martini; C. S. Kochanek; Ying Zu; B. J. Shappee; Robert J. Siverd; Thomas G. Beatty; S. G. Sergeev; Shai Kaspi; C. Araya Salvo; Jonathan C. Bird; D. J. Bord; G. A. Borman; Xiao Che; Chien-Ting J. Chen; Seth A. Cohen; Matthias Dietrich; V. T. Doroshenko; Yu. S. Efimov; N. Free; I. Ginsburg; C. B. Henderson; Ashley L. King; K. Mogren

We present velocity-resolved reverberation results for five active galactic nuclei. We recovered velocity-delay maps using the maximum entropy method for four objects: Mrk 335, Mrk 1501, 3C?120, and PG?2130+099. For the fifth, Mrk 6, we were only able to measure mean time delays in different velocity bins of the H? emission line. The four velocity-delay maps show unique dynamical signatures for each object. For 3C?120, the Balmer lines show kinematic signatures consistent with both an inclined disk and infalling gas, but the He II??4686 emission line is suggestive only of inflow. The Balmer lines in Mrk 335, Mrk 1501, and PG?2130+099 show signs of infalling gas, but the He II emission in Mrk 335 is consistent with an inclined disk. We also see tentative evidence of combined virial motion and infalling gas from the velocity-binned analysis of Mrk 6. The maps for 3C?120 and Mrk 335 are two of the most clearly defined velocity-delay maps to date. These maps constitute a large increase in the number of objects for which we have resolved velocity-delay maps and provide evidence supporting the reliability of reverberation-based black hole mass measurements.


Science | 2017

Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis

M. R. Drout; Anthony L. Piro; B. J. Shappee; C. D. Kilpatrick; J. D. Simon; Carlos Contreras; D. A. Coulter; Ryan J. Foley; M. R. Siebert; Nidia I. Morrell; K. Boutsia; F. Di Mille; T. W.-S. Holoien; Daniel Kasen; J. A. Kollmeier; Barry F. Madore; A. J. Monson; A. Murguia-Berthier; Y.-C. Pan; J. X. Prochaska; Enrico Ramirez-Ruiz; A. Rest; C. Adams; K. Alatalo; Eduardo Bañados; J. Baughman; Timothy C. Beers; R. A. Bernstein; T. Bitsakis; A. Campillay

Photons from a gravitational wave event Two neutron stars merging together generate a gravitational wave signal and have also been predicted to emit electromagnetic radiation. When the gravitational wave event GW170817 was detected, astronomers rushed to search for the source using conventional telescopes (see the Introduction by Smith). Coulter et al. describe how the One-Meter Two-Hemispheres (1M2H) collaboration was the first to locate the electromagnetic source. Drout et al. present the 1M2H measurements of its optical and infrared brightness, and Shappee et al. report their spectroscopy of the event, which is unlike previously detected astronomical transient sources. Kilpatrick et al. show how these observations can be explained by an explosion known as a kilonova, which produces large quantities of heavy elements in nuclear reactions. Science, this issue p. 1556, p. 1570, p. 1574, p. 1583; see also p. 1554 Photometric observations of a neutron star merger show that it produced heavy elements through r-process nucleosynthesis. On 17 August 2017, gravitational waves (GWs) were detected from a binary neutron star merger, GW170817, along with a coincident short gamma-ray burst, GRB 170817A. An optical transient source, Swope Supernova Survey 17a (SSS17a), was subsequently identified as the counterpart of this event. We present ultraviolet, optical, and infrared light curves of SSS17a extending from 10.9 hours to 18 days postmerger. We constrain the radioactively powered transient resulting from the ejection of neutron-rich material. The fast rise of the light curves, subsequent decay, and rapid color evolution are consistent with multiple ejecta components of differing lanthanide abundance. The late-time light curve indicates that SSS17a produced at least ~0.05 solar masses of heavy elements, demonstrating that neutron star mergers play a role in rapid neutron capture (r-process) nucleosynthesis in the universe.


Science | 2016

ASASSN-15lh: A highly super-luminous supernova

Subo Dong; B. J. Shappee; Jose Luis Palacio Prieto; Saurabh W. Jha; K. Z. Stanek; T. W.-S. Holoien; C. S. Kochanek; Todd A. Thompson; Nidia I. Morrell; Ian B. Thompson; U. Basu; J. F. Beacom; D. F. Bersier; J. K. Brimacombe; J. S. Brown; F. Bufano; Ping Chen; E. Conseil; A. B. Danilet; E. Falco; Dirk Grupe; Seiichiro Kiyota; G. Masi; B. Nicholls; F. Olivares; G. Pignata; G. Pojmanski; G. V. Simonian; D. M. Szczygieł; P. R. Woźniak

The most luminous supernova to date Supernovae are exploding stars at the end of their lives, providing an input of heavy elements and energy into galaxies. Some types have near-identical peak brightness, but in recent years a new class of superluminous supernovae has been found. Dong et al.y report the discovery of ASASSN-15lh (SN 2015L), the most luminous supernova yet found by some margin. It appears to originate in a large quiescent galaxy, in contrast to most super-luminous supernovae, which typically come from star-forming dwarf galaxies. The discovery will provide constraints on models of superluminous supernovae and how they affect their host galaxies. Science, this issue p. 257 The most luminous supernova yet found was glimpsed in an unusual host galaxy. We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of Mu,AB = –23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 1045 ergs s–1, which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (MK ≈ –25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 1052 ergs, challenging the magnetar model for its engine.


The Astrophysical Journal | 2014

THE TYPECASTING OF ACTIVE GALACTIC NUCLEI: Mrk 590 NO LONGER FITS THE ROLE

K. D. Denney; G. De Rosa; K. V. Croxall; A. Gupta; Misty C. Bentz; M. Fausnaugh; C. J. Grier; Paul Martini; S. Mathur; Bradley M. Peterson; Richard W. Pogge; B. J. Shappee

We present multi-wavelength observations that trace more than 40 years in the life of the active galactic nucleus (AGN) in Mrk 590, traditionally known as a classic Seyfert 1 galaxy. From spectra recently obtained from HST, Chandra, and the Large Binocular Telescope, we find that the activity in the nucleus of Mrk 590 has diminished so significantly that the continuum luminosity is a factor of 100 lower than the peak luminosity probed by our long baseline observations. Furthermore, the broad emission lines, once prominent in the UV/optical spectrum, have all but disappeared. Since AGN type is defined by the presence of broad emission lines in the optical spectrum, our observations demonstrate that Mrk 590 has now become a “changing look” AGN. If classified by recent optical spectra, Mrk 590 would be a Seyfert ∼1.9−2, where the only broad emission line still visible in the optical spectrum is a weak component of Hα. As an additional consequence of this change, we have definitively detected UV narrow-line components in a Type 1 AGN, allowing an analysis of these emission-line components with high-resolution COS spectra. These observations challenge the historical paradigm that AGN type is only a consequence of the line of sight viewing angle toward the nucleus in the presence of a geometrically-flattened, obscuring medium (i.e., the torus). Our data instead suggest that the current state of Mrk 590 is a consequence of the change in luminosity, which implies the black hole accretion rate has significantly decreased.


Science | 2017

Electromagnetic evidence that SSS17a is the result of a binary neutron star merger

Charles D. Kilpatrick; Ryan J. Foley; Daniel Kasen; A. Murguia-Berthier; Enrico Ramirez-Ruiz; D. A. Coulter; M. R. Drout; Anthony L. Piro; B. J. Shappee; K. Boutsia; Carlos Contreras; F. Di Mille; Barry F. Madore; Nidia I. Morrell; Y.-C. Pan; Jason X. Prochaska; A. Rest; C. Rojas-Bravo; M. R. Siebert; J. D. Simon; N. Ulloa

Photons from a gravitational wave event Two neutron stars merging together generate a gravitational wave signal and have also been predicted to emit electromagnetic radiation. When the gravitational wave event GW170817 was detected, astronomers rushed to search for the source using conventional telescopes (see the Introduction by Smith). Coulter et al. describe how the One-Meter Two-Hemispheres (1M2H) collaboration was the first to locate the electromagnetic source. Drout et al. present the 1M2H measurements of its optical and infrared brightness, and Shappee et al. report their spectroscopy of the event, which is unlike previously detected astronomical transient sources. Kilpatrick et al. show how these observations can be explained by an explosion known as a kilonova, which produces large quantities of heavy elements in nuclear reactions. Science, this issue p. 1556, p. 1570, p. 1574, p. 1583; see also p. 1554 Optical and infrared observations indicate that GW170817 was a neutron star merger, independent of the gravitational wave data. Eleven hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient, SSS17a, was identified in the galaxy NGC 4993. Although the gravitational wave data indicate that GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints on the nature of that system. We synthesize the optical to near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration, finding that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We conclude that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result.


The Astrophysical Journal | 2016

SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA

M. Nicholl; Edo Berger; S. J. Smartt; Raffaella Margutti; Atish Kamble; K. D. Alexander; T.-W. Chen; C. Inserra; I. Arcavi; P. K. Blanchard; R. Cartier; K. C. Chambers; Michael J. Childress; Ryan Chornock; P. S. Cowperthwaite; Maria Rebecca Drout; H. Flewelling; M. Fraser; Avishay Gal-Yam; L. Galbany; J. Harmanen; T. W.-S. Holoien; G. Hosseinzadeh; D. A. Howell; M. Huber; A. Jerkstrand; E. Kankare; C. S. Kochanek; Z.-Y. Lin; R. Lunnan

We present observations of SN 2015bn (= PS15ae = CSS141223-113342+004332 = MLS150211-113342+004333), a Type I superluminous supernova (SLSN) at redshift


Science | 2017

Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger

B. J. Shappee; J. D. Simon; M. R. Drout; Anthony L. Piro; Nidia I. Morrell; Jose Luis Palacio Prieto; Daniel Kasen; T. W.-S. Holoien; J. A. Kollmeier; D. D. Kelson; D. A. Coulter; Ryan J. Foley; Charles D. Kilpatrick; M. R. Siebert; Barry F. Madore; A. Murguia-Berthier; Y.-C. Pan; Jason X. Prochaska; Enrico Ramirez-Ruiz; A. Rest; C. Adams; K. Alatalo; Eduardo Bañados; J. Baughman; R. A. Bernstein; T. Bitsakis; K. Boutsia; J. R. Bravo; F. Di Mille; C. R. Higgs

z=0.1136


Monthly Notices of the Royal Astronomical Society | 2016

ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc

T. W.-S. Holoien; C. S. Kochanek; Jose Luis Palacio Prieto; Dirk Grupe; Ping Chen; D. Godoy-Rivera; K. Z. Stanek; B. J. Shappee; Subo Dong; J. S. Brown; U. Basu; J. F. Beacom; D. F. Bersier; J. K. Brimacombe; E. K. Carlson; E. Falco; E. Johnston; Barry F. Madore; G. Pojmanski; Mark Seibert

. As well as being one of the closest SLSNe I yet discovered, it is intrinsically brighter (

Collaboration


Dive into the B. J. Shappee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. F. Bersier

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

U. Basu

Ohio State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge