Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Kalyanaraman is active.

Publication


Featured researches published by B. Kalyanaraman.


Free Radical Biology and Medicine | 2012

Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

B. Kalyanaraman; Victor M. Darley-Usmar; Kelvin J.A. Davies; Phyllis A. Dennery; Henry Jay Forman; Matthew B. Grisham; Giovanni E. Mann; Kevin Moore; L. Jackson Roberts; Harry Ischiropoulos

The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity.

Frank Weinberg; Robert B. Hamanaka; William W. Wheaton; Samuel E. Weinberg; Joy Joseph; Marcos Lopez; B. Kalyanaraman; Gökhan M. Mutlu; G. R. Scott Budinger; Navdeep S. Chandel

Otto Warburgs theory on the origins of cancer postulates that tumor cells have defects in mitochondrial oxidative phosphorylation and therefore rely on high levels of aerobic glycolysis as the major source of ATP to fuel cellular proliferation (the Warburg effect). This is in contrast to normal cells, which primarily utilize oxidative phosphorylation for growth and survival. Here we report that the major function of glucose metabolism for Kras-induced anchorage-independent growth, a hallmark of transformed cells, is to support the pentose phosphate pathway. The major function of glycolytic ATP is to support growth under hypoxic conditions. Glutamine conversion into the tricarboxylic acid cycle intermediate alpha-ketoglutarate through glutaminase and alanine aminotransferase is essential for Kras-induced anchorage-independent growth. Mitochondrial metabolism allows for the generation of reactive oxygen species (ROS) which are required for Kras-induced anchorage-independent growth through regulation of the ERK MAPK signaling pathway. We show that the major source of ROS generation required for anchorage-independent growth is the Qo site of mitochondrial complex III. Furthermore, disruption of mitochondrial function by loss of the mitochondrial transcription factor A (TFAM) gene reduced tumorigenesis in an oncogenic Kras-driven mouse model of lung cancer. These results demonstrate that mitochondrial metabolism and mitochondrial ROS generation are essential for Kras-induced cell proliferation and tumorigenesis.


Free Radical Biology and Medicine | 2003

Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: Potential implications in intracellular fluorescence detection of superoxide

Hongtao Zhao; Shasi V. Kalivendi; Hao Zhang; Joy Joseph; Kasem Nithipatikom; Jeannette Vasquez-Vivar; B. Kalyanaraman

Hydroethidine (HE) or dihydroethidium (DHE), a redox-sensitive probe, has been widely used to detect intracellular superoxide anion. It is a common assumption that the reaction between superoxide and HE results in the formation of a two-electron oxidized product, ethidium (E+), which binds to DNA and leads to the enhancement of fluorescence (excitation, 500-530 nm; emission, 590-620 nm). However, the mechanism of oxidation of HE by the superoxide anion still remains unclear. In the present study, we show that superoxide generated in several enzymatic or chemical systems (e.g., xanthine/xanthine oxidase, endothelial nitric oxide synthase, or potassium superoxide) oxidizes HE to a fluorescent product (excitation, 480 nm; emission, 567 nm) that is totally different from E+. HPLC measurements revealed that the HE/superoxide reaction product elutes differently from E+. This new product exhibited an increase in fluorescence in the presence of DNA. Mass spectral data indicated that the molecular weight of the HE/superoxide reaction product is 330, while ethidium has a molecular weight of 314. We conclude that the reaction between superoxide and HE forms a fluorescent marker product that is different from ethidium. Potential implications of this finding in intracellular detection and imaging of superoxide are discussed.


Free Radical Biology and Medicine | 2008

REDOX-BASED REGULATION OF SIGNAL TRANSDUCTION: PRINCIPLES, PITFALLS, AND PROMISES

Yvonne M. W. Janssen-Heininger; Brooke T. Mossman; Nicholas H. Heintz; Henry Jay Forman; B. Kalyanaraman; Toren Finkel; Jonathan S. Stamler; Sue Goo Rhee; Albert van der Vliet

Oxidants are produced as a by-product of aerobic metabolism, and organisms ranging from prokaryotes to mammals have evolved with an elaborate and redundant complement of antioxidant defenses to confer protection against oxidative insults. Compelling data now exist demonstrating that oxidants are used in physiological settings as signaling molecules with important regulatory functions controlling cell division, migration, contraction, and mediator production. These physiological functions are carried out in an exquisitely regulated and compartmentalized manner by mild oxidants, through subtle oxidative events that involve targeted amino acids in proteins. The precise understanding of the physiological relevance of redox signal transduction has been hampered by the lack of specificity of reagents and the need for chemical derivatization to visualize reversible oxidations. In addition, it is difficult to measure these subtle oxidation events in vivo. This article reviews some of the recent findings that illuminate the significance of redox signaling and exciting future perspectives. We also attempt to highlight some of the current pitfalls and the approaches needed to advance this important area of biochemical and biomedical research.


Journal of Biological Chemistry | 1996

Mechanism of Nitric Oxide Release from S-Nitrosothiols

Ravinder Jit Singh; Neil Hogg; Joy Joseph; B. Kalyanaraman

S-Nitrosothiols have many biological activities and have been suggested to be intermediates in signal transduction. The mechanism and products of S-nitrosothiol decomposition are of great significance to the understanding of nitric oxide (·NO) biochemistry. S-Nitrosothiols are stable compounds at 37°C and pH 7.4 in the presence of transition metal ion chelators. The presence of trace transition metal ions (present in all buffers) stimulates the catalytic breakdown of S-nitrosothiols to ·NO and disulfide. Thiyl radicals are not formed as intermediates in this process. Photolysis of S-nitrosothiols results in the formation of ·NO and disulfide via the intermediacy of thiyl radicals. Reduced metal ion (e.g. Cu+) decomposes S-nitrosothiols more rapidly than oxidized metal ion (e.g. Cu2+) indicating that reducing agents such as glutathione and ascorbate can stimulate decomposition of S-nitrosothiol by chemical reduction of contaminating transition metal ions. Transnitrosation can also stimulate S-nitrosothiol decomposition if the product S-nitrosothiol is more susceptible to transition metal ion-catalyzed decomposition than the parent S-nitrosothiol. Equilibrium constants for the transnitrosation reactions of reduced glutathione, either with S-nitroso-N-acetyl-DL-penicillamine or with S-nitroso-L-cysteine indicate that S-nitrosoglutathione formation is favored. The biological relevance of S-nitrosothiol decomposition is discussed.


Cell Metabolism | 2011

Unraveling the Biological Roles of Reactive Oxygen Species

Michael P. Murphy; Arne Holmgren; Nils-Göran Larsson; Barry Halliwell; Christopher J. Chang; B. Kalyanaraman; Sue Goo Rhee; Paul J. Thornalley; Linda Partridge; David Gems; Thomas Nyström; Vsevolod V. Belousov; Paul T. Schumacker; Christine C. Winterbourn

Reactive oxygen species are not only harmful agents that cause oxidative damage in pathologies, they also have important roles as regulatory agents in a range of biological phenomena. The relatively recent development of this more nuanced view presents a challenge to the biomedical research community on how best to assess the significance of reactive oxygen species and oxidative damage in biological systems. Considerable progress is being made in addressing these issues, and here we survey some recent developments for those contemplating research in this area.


FEBS Letters | 1993

Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis.

Neil Hogg; B. Kalyanaraman; Joy Joseph; Andrew Struck; Sampath Parthasarathy

The effects of nitric oxide (•NO) and nitrovasodilators on the oxidation of low‐density lipoprotein (LDL) have been studied. S‐Nitroso‐N‐acetylpenicillamine (SNAP) and sodium nitroprusside (SNP) inhibited Cu2+‐and 2,2′‐azobis‐2‐amidinopropane hydrochloride‐dependent oxidation of LDL as monitored by oxygen consumption and the formation of thiobarbituric acid‐reactive substances, conjugated dienes, and lipid hydroperoxides. In the case of SNP, inhibition of LDL oxidation occurred only when the incubation mixture was irradiated with visible light. SNAP, however, exerted a dose‐dependent inhibition of Cu2+‐catalyzed oxidation of LDL even in the dark. Addition of •NO dissolved in deoxygenated buffer also inhibited the progression of LDL oxidation. Mouse peritoneal macrophages were less able to degrade LDL that had been oxidized in the presence of SNAP. Using an •NO electrode, it was estimated that a continuous production of •NO (⩽ 760 nM/min) could retard the progression of LDL oxidation. We propose that •NO can inhibit LDL oxidation by acting as a chain‐breaking antioxidant that is capable of scavenging carbon‐centered and peroxyl radicals. Biological implications of this novel •NO antioxidant property are discussed in relation to atherogenesis and contrasted to the prooxidant property of •NO when generated in the presence of superoxide.


Cell Metabolism | 2011

Mitochondrial Complex III ROS Regulate Adipocyte Differentiation

Kathryn V. Tormos; Elena Anso; Robert B. Hamanaka; James Eisenbart; Joy Joseph; B. Kalyanaraman; Navdeep S. Chandel

Adipocyte differentiation is characterized by an increase in mitochondrial metabolism. However, it is not known whether the increase in mitochondrial metabolism is essential for differentiation or a byproduct of the differentiation process. Here, we report that primary human mesenchymal stem cells undergoing differentiation into adipocytes display an early increase in mitochondrial metabolism, biogenesis, and reactive oxygen species (ROS) generation. This early increase in mitochondrial metabolism and ROS generation was dependent on mTORC1 signaling. Mitochondrial-targeted antioxidants inhibited adipocyte differentiation, which was rescued by the addition of exogenous hydrogen peroxide. Genetic manipulation of mitochondrial complex III revealed that ROS generated from this complex is required to initiate adipocyte differentiation. These results indicate that mitochondrial metabolism and ROS generation are not simply a consequence of differentiation but are a causal factor in promoting adipocyte differentiation.


Journal of Biological Chemistry | 2000

Doxorubicin-induced Apoptosis in Endothelial Cells and Cardiomyocytes Is Ameliorated by Nitrone Spin Traps and Ebselen ROLE OF REACTIVE OXYGEN AND NITROGEN SPECIES

Srigiridhar Kotamraju; Eugene A. Konorev; Joy Joseph; B. Kalyanaraman

Doxorubicin (DOX) is a broad spectrum anthracycline antibiotic used to treat a variety of cancers. Redox activation of DOX to form reactive oxygen species has been implicated in DOX-induced cardiotoxicity. In this work we investigated DOX-induced apoptosis in cultured bovine aortic endothelial cells and cardiomyocytes isolated from adult rat heart. Exposure of bovine aortic endothelial cells or myocytes to submicromolar levels of DOX induced significant apoptosis as measured by DNA fragmentation and terminal deoxynucleotidyltransferase-mediated nick-end labeling assays. Pretreatment of cells with 100 μm nitrone spin traps, N-tert-butyl-α-phenylnitrone (PBN) or α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) dramatically inhibited DOX-induced apoptosis. Ebselen (20–50 μm), a glutathione peroxidase mimetic, also significantly inhibited apoptosis. DOX (0.5–1 μm) inactivated mitochondrial complex I by a superoxide-dependent mechanism. PBN (100 μm), POBN (100 μm), and ebselen (50 μm) restored complex I activity. These compounds also inhibited DOX-induced caspase-3 activation and cytochrome crelease. PBN and ebselen also restored glutathione levels in DOX-treated cells. We conclude that nitrone spin traps and ebselen inhibit the DOX-induced apoptotic signaling mechanism and that this antiapoptotic mechanism may be linked in part to the inhibition in formation or scavenging of hydrogen peroxide. Therapeutic strategies to mitigate DOX cardiotoxicity should be reexamined in light of these emerging antiapoptotic mechanisms of antioxidants.


Free Radical Biology and Medicine | 2010

Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth

Jacek Zielonka; B. Kalyanaraman

Hydroethidine (HE; or dihydroethidium) is the most popular fluorogenic probe used for detecting intracellular superoxide radical anion. The reaction between superoxide and HE generates a highly specific red fluorescent product, 2-hydroxyethidium (2-OH-E(+)). In biological systems, another red fluorescent product, ethidium, is also formed, usually at a much higher concentration than 2-OH-E(+). In this article, we review the methods to selectively detect the superoxide-specific product (2-OH-E(+)) and the factors affecting its levels in cellular and biological systems. The most important conclusion of this review is that it is nearly impossible to assess the intracellular levels of the superoxide-specific product, 2-OH-E(+), using confocal microscopy or other fluorescence-based microscopic assays and that it is essential to measure by HPLC the intracellular HE and other oxidation products of HE, in addition to 2-OH-E(+), to fully understand the origin of red fluorescence. The chemical reactivity of mitochondria-targeted hydroethidine (Mito-HE, MitoSOX red) with superoxide is similar to the reactivity of HE with superoxide, and therefore, all of the limitations attributed to the HE assay are applicable to Mito-HE (or MitoSOX) as well.

Collaboration


Dive into the B. Kalyanaraman's collaboration.

Top Co-Authors

Avatar

Joy Joseph

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jacek Zielonka

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Neil Hogg

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Micael Hardy

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Gang Cheng

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Eugene A. Konorev

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravinder Jit Singh

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge