B. Kim Lee Sim
Naval Medical Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. Kim Lee Sim.
Science | 2013
Robert A. Seder; Lee Jah Chang; Mary E. Enama; Kathryn L. Zephir; Uzma N. Sarwar; Ingelise J. Gordon; LaSonji A. Holman; Eric R. James; Peter F. Billingsley; Anusha Gunasekera; Adam Richman; Sumana Chakravarty; Anita Manoj; Soundarapandian Velmurugan; Minglin Li; Adam Ruben; Tao Li; Abraham G. Eappen; Richard E. Stafford; Sarah Plummer; Cynthia S. Hendel; Laura Novik; Pamela Costner; Floreliz Mendoza; Jamie G. Saunders; Martha Nason; Jason H. Richardson; Jittawadee Murphy; Silas A. Davidson; Thomas L. Richie
Malaria Sporozoite Vaccine Each year, hundreds of millions of people are infected with Plasmodium falciparum, the mosquito-borne parasite that causes malaria. A preventative vaccine is greatly needed. Seder et al. (p. 1359, published online 8 August; see the Perspective by Good) now report the results from a phase I clinical trial where subjects were immunized intravenously with a whole, attenuated sporozoite vaccine. Three of 9 subjects who received four doses and zero of 6 subjects who received five doses of the vaccine went on to develop malaria after controlled malaria infection. Both antibody titers and cellular immune responses correlated positively with the dose of vaccine received, suggesting that both arms of the adaptive immune response may have participated in the observed protection. Intravenous immunization with an attenuated whole malaria sporozoite vaccine protected volunteers in a phase I clinical trial. [Also see Perspective by Good] Consistent, high-level, vaccine-induced protection against human malaria has only been achieved by inoculation of Plasmodium falciparum (Pf) sporozoites (SPZ) by mosquito bites. We report that the PfSPZ Vaccine—composed of attenuated, aseptic, purified, cryopreserved PfSPZ—was safe and wel-tolerated when administered four to six times intravenously (IV) to 40 adults. Zero of six subjects receiving five doses and three of nine subjects receiving four doses of 1.35 × 105 PfSPZ Vaccine and five of six nonvaccinated controls developed malaria after controlled human malaria infection (P = 0.015 in the five-dose group and P = 0.028 for overall, both versus controls). PfSPZ-specific antibody and T cell responses were dose-dependent. These data indicate that there is a dose-dependent immunological threshold for establishing high-level protection against malaria that can be achieved with IV administration of a vaccine that is safe and meets regulatory standards.
Human Vaccines | 2010
Stephen L. Hoffman; Peter F. Billingsley; Eric R. James; Adam Richman; Mark Loyevsky; Tao Li; Sumana Chakravarty; Anusha Gunasekera; Rana Chattopadhyay; Minglin Li; Richard E. Stafford; Adriana Ahumada; Judith E. Epstein; Martha Sedegah; Sharina Reyes; Thomas L. Richie; Kirsten E. Lyke; Robert Edelman; Matthew B. Laurens; Christopher V. Plowe; B. Kim Lee Sim
Immunization of volunteers by the bite of mosquitoes carrying radiation-attenuated Plasmodium falciparum sporozoites protects greater than 90% of such volunteers against malaria, if adequate numbers of immunizing biting sessions and sporozoite-infected mosquitoes are used. Nonetheless, until recently it was considered impossible to develop, license and commercialize a live, whole parasite P. falciparum sporozoite (PfSPZ) vaccine. In 2003 Sanaria scientists reappraised the potential impact of a metabolically active, non-replicating PfSPZ vaccine, and outlined the challenges to producing such a vaccine. Six years later, significant progress has been made in overcoming these challenges. This progress has enabled the manufacture and release of multiple clinical lots of a 1(st) generation metabolically active, non-replicating PfSPZ vaccine, the Sanaria PfSPZ Vaccine, submission of a successful Investigational New Drug application to the US Food and Drug Administration, and initiation of safety, immunogenicity and protective efficacy studies in volunteers in MD, US. Efforts are now focused on how best to achieve submission of a successful Biologics License Application and introduce the vaccine to the primary target population of African children in the shortest possible period of time. This will require implementation of a systematic, efficient clinical development plan. Short term challenges include optimizing the (1) efficiency and scale up of the manufacturing process and quality control assays, (2) dosage regimen and method of administration, (3) potency of the vaccine, and (4) logistics of delivering the vaccine to those who need it most, and finalizing the methods for vaccine stabilization and attenuation. A medium term goal is to design and build a facility for manufacturing highly potent and stable vaccine for pivotal Phase 3 studies and commercial launch.
Infection and Immunity | 2001
David L. Narum; Sanjai Kumar; William O. Rogers; Steven R. Fuhrmann; Hong Liang; Miranda Oakley; Alem Taye; B. Kim Lee Sim; Stephen L. Hoffman
ABSTRACT In contrast to conventional vaccines, DNA and other subunit vaccines exclusively utilize host cell molecules for transcription and translation of proteins. The adenine plus thymine content of Plasmodium falciparum gene sequences (∼80%) is much greater than that of Homo sapiens(∼59%); consequently, codon usage is markedly different. We hypothesized that modifying codon usage of P. falciparumgenes encoded by DNA vaccines from that used by the parasite to those resembling mammalian codon usage would lead to increased P. falciparum protein expression in vitro in mouse cells and increased antibody responses in DNA-vaccinated mice. We synthesized gene fragments encoding the receptor-binding domain of the 175-kDaP. falciparum erythrocyte-binding protein (EBA-175 region II) and the 42-kDa C-terminal processed fragment of the P. falciparum merozoite surface protein 1 (MSP-142) using the most frequently occurring codon in mammals to code for each amino acid, and inserted the synthetic genes in DNA vaccine plasmids. In in vitro transient-expression assays, plasmids containing codon-optimized synthetic gene fragments (pS plasmids) showed greater than fourfold increased protein expression in mouse cells compared to those containing native gene fragments (pN plasmids). In mice immunized with 0.5, 5.0, or 50 μg of the DNA plasmids, the dose of DNA required to induce equivalent antibody titers was 10- to 100-fold lower for pS than for pN plasmids. These data demonstrate that optimizing codon usage in DNA vaccines can improve protein expression and consequently the immunogenicity of gene fragments in DNA vaccines for organisms whose codon usage differs substantially from that of mammals.
Journal of Biological Chemistry | 2001
Nicholas J. MacDonald; Wanda Y. Shivers; David L. Narum; Stacy M. Plum; Jennifer N. Wingard; Steven R. Fuhrmann; Hong Liang; Janel Holland-Linn; D. H. Tom Chen; B. Kim Lee Sim
The mechanism of action of Endostatin, an endogenous inhibitor of angiogenesis and tumor growth, remains unknown. We utilized phage-display technology to identify polypeptides that mimic the binding domains of proteins with which Endostatin interacts. A conformed peptide (E37) was identified that shares an epitope with human tropomyosin implicating tropomyosin as an Endostatin-binding protein. We show that recombinant human Endostatin binds tropomyosin in vitro and to tropomyosin-associated microfilaments in a variety of endothelial cell types. The most compelling evidence that tropomyosin modulates the activity of Endostatin was demonstrated when E37 blocked greater than 84% of the tumor-growth inhibitory activity of Endostatin in the B16-BL6 metastatic melanoma model. We conclude that the E37 peptide mimics the Endostatin-binding epitope of tropomyosin and blocks the antitumor activity of Endostatin by competing for Endostatin binding. We postulate that the Endostatin interaction with tropomyosin results in disruption of microfilament integrity leading to inhibition of cell motility, induction of apoptosis, and ultimately inhibition of tumor growth.
American Journal of Tropical Medicine and Hygiene | 2013
Meta Roestenberg; Else M. Bijker; B. Kim Lee Sim; Peter F. Billingsley; Eric R. James; Guido J. H. Bastiaens; Anne C. Teirlinck; Anja Scholzen; Karina Teelen; Theo Arens; Andre van der Ven; Anusha Gunasekera; Sumana Chakravarty; Soundarapandian Velmurugan; Cornelus C. Hermsen; Robert W. Sauerwein; Stephen L. Hoffman
Controlled human malaria infection with sporozoites is a standardized and powerful tool for evaluation of malaria vaccine and drug efficacy but so far only applied by exposure to bites of Plasmodium falciparum (Pf)-infected mosquitoes. We assessed in an open label Phase 1 trial, infection after intradermal injection of respectively 2,500, 10,000, or 25,000 aseptic, purified, vialed, cryopreserved Pf sporozoites (PfSPZ) in three groups (N = 6/group) of healthy Dutch volunteers. Infection was safe and parasitemia developed in 15 of 18 volunteers (84%), 5 of 6 volunteers in each group. There were no differences between groups in time until parasitemia by microscopy or quantitative polymerase chain reaction, parasite kinetics, clinical symptoms, or laboratory values. This is the first successful infection by needle and syringe with PfSPZ manufactured in compliance with regulatory standards. After further optimization, the use of such PfSPZ may facilitate and accelerate clinical development of novel malaria drugs and vaccines.
Nature Medicine | 2016
Andrew S. Ishizuka; Kirsten E. Lyke; Adam DeZure; Andrea A. Berry; Thomas L. Richie; Floreliz Mendoza; Mary E. Enama; Ingelise J. Gordon; Lee-Jah Chang; Uzma N Sarwar; Kathryn L. Zephir; LaSonji A. Holman; Eric R. James; Peter F. Billingsley; Anusha Gunasekera; Sumana Chakravarty; Anita Manoj; Minglin Li; Adam Ruben; Tao Li; Abraham G. Eappen; Richard E. Stafford; Natasha K C; Tooba Murshedkar; Hope DeCederfelt; Sarah Plummer; Cynthia S. Hendel; Laura Novik; Pamela Costner; Jamie G. Saunders
An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.7 × 105 PfSPZ, 6/11 (55%) vaccinated subjects remained without parasitemia following CHMI 21 weeks after immunization. Five non-parasitemic subjects from this dosage group underwent repeat CHMI at 59 weeks, and none developed parasitemia. Although Pf-specific serum antibody levels correlated with protection up to 21–25 weeks after immunization, antibody levels waned substantially by 59 weeks. Pf-specific T cell responses also declined in blood by 59 weeks. To determine whether T cell responses in blood reflected responses in liver, we vaccinated nonhuman primates with PfSPZ Vaccine. Pf-specific interferon-γ-producing CD8 T cells were present at ∼100-fold higher frequencies in liver than in blood. Our findings suggest that PfSPZ Vaccine conferred durable protection to malaria through long-lived tissue-resident T cells and that administration of higher doses may further enhance protection.
Nature | 2017
Benjamin Mordmüller; Güzin Surat; Heimo Lagler; Sumana Chakravarty; Andrew S. Ishizuka; Albert Lalremruata; Markus Gmeiner; Joseph J. Campo; Meral Esen; Adam Ruben; Jana Held; Carlos Lamsfus Calle; Juliana Mengue; Tamirat Gebru; Javier Ibáñez; Mihály Sulyok; Eric R. James; Peter F. Billingsley; Natasha Kc; Anita Manoj; Tooba Murshedkar; Anusha Gunasekera; Abraham G. Eappen; Tao Li; Richard E. Stafford; Minglin Li; Phil Felgner; Robert A. Seder; Thomas L. Richie; B. Kim Lee Sim
A highly protective malaria vaccine would greatly facilitate the prevention and elimination of malaria and containment of drug-resistant parasites. A high level (more than 90%) of protection against malaria in humans has previously been achieved only by immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (PfSPZ) inoculated by mosquitoes; by intravenous injection of aseptic, purified, radiation-attenuated, cryopreserved PfSPZ (‘PfSPZ Vaccine’); or by infectious PfSPZ inoculated by mosquitoes to volunteers taking chloroquine or mefloquine (chemoprophylaxis with sporozoites). We assessed immunization by direct venous inoculation of aseptic, purified, cryopreserved, non-irradiated PfSPZ (‘PfSPZ Challenge’) to malaria-naive, healthy adult volunteers taking chloroquine for antimalarial chemoprophylaxis (vaccine approach denoted as PfSPZ-CVac). Three doses of 5.12 × 104 PfSPZ of PfSPZ Challenge at 28-day intervals were well tolerated and safe, and prevented infection in 9 out of 9 (100%) volunteers who underwent controlled human malaria infection ten weeks after the last dose (group III). Protective efficacy was dependent on dose and regimen. Immunization with 3.2 × 103 (group I) or 1.28 × 104 (group II) PfSPZ protected 3 out of 9 (33%) or 6 out of 9 (67%) volunteers, respectively. Three doses of 5.12 × 104 PfSPZ at five-day intervals protected 5 out of 8 (63%) volunteers. The frequency of Pf-specific polyfunctional CD4 memory T cells was associated with protection. On a 7,455 peptide Pf proteome array, immune sera from at least 5 out of 9 group III vaccinees recognized each of 22 proteins. PfSPZ-CVac is a highly efficacious vaccine candidate; when we are able to optimize the immunization regimen (dose, interval between doses, and drug partner), this vaccine could be used for combination mass drug administration and a mass vaccination program approach to eliminate malaria from geographically defined areas.
Molecular and Biochemical Parasitology | 2002
David L. Narum; Steven R. Fuhrmann; Tin Luu; B. Kim Lee Sim
The 175-kDa erythrocyte binding protein (EBA-175) of Plasmodium falciparum and Duffy antigen binding proteins of P. vivax and P. knowlesi are members of a protein family. The features of this protein family include a cysteine-rich motif present in the erythrocyte receptor-binding domain. We identify here a novel 140-kDa P. falciparum erythrocyte binding protein (EBP2/BAEBL) containing the signature cysteine-rich motif by comparative analysis of gene sequence information. Polyclonal antibodies generated by immunization with an EBP2/BAEBL DNA vaccine immunoprecipitated a 140-kDa protein from P. falciparum schizont-infected erythrocyte lysates. Similar to EBA-175, the binding of EBP2/BAEBL to human erythrocytes was dependent on sialic acids because neuraminidase treatment of those erythrocytes rendered them incapable of binding, but differed from EBA-175 in that trypsin treatment decreased EBP2/BAEBL binding by only twofold compared to a 10-fold reduction in EBA-175 binding. Antibodies raised against the putative erythrocyte-binding domain of EBP2/BAEBL effectively blocked the binding of native EBP2/BAEBL to erythrocytes. These functional antibodies localize EBP2/BAEBL to the invasive apical end of the merozoite. We identify EBP2/BAEBL as a paralogue of EBA-175 and as a novel P. falciparum vaccine candidate.
Vaccine | 2015
Thomas L. Richie; Peter F. Billingsley; B. Kim Lee Sim; Eric R. James; Sumana Chakravarty; Judith E. Epstein; Kirsten E. Lyke; Benjamin Mordmüller; Pedro L. Alonso; Patrick E. Duffy; Ogobara K. Doumbo; Robert W. Sauerwein; Marcel Tanner; Salim Abdulla; Peter G. Kremsner; Robert A. Seder; Stephen L. Hoffman
Sanaria Inc. has developed methods to manufacture, purify and cryopreserve aseptic Plasmodium falciparum (Pf) sporozoites (SPZ), and is using this platform technology to develop an injectable PfSPZ-based vaccine that provides high-grade, durable protection against infection with Pf malaria. Several candidate vaccines are being developed and tested, including PfSPZ Vaccine, in which the PfSPZ are attenuated by irradiation, PfSPZ-CVac, in which fully infectious PfSPZ are attenuated in vivo by concomitant administration of an anti-malarial drug, and PfSPZ-GA1, in which the PfSPZ are attenuated by gene knockout. Forty-three research groups in 15 countries, organized as the International PfSPZ Consortium (I-PfSPZ-C), are collaborating to advance this program by providing intellectual, clinical, and financial support. Fourteen clinical trials of these products have been completed in the USA, Europe and Africa, two are underway and at least 12 more are planned for 2015–2016 in the US (four trials), Germany (2 trials), Tanzania, Kenya, Mali, Burkina Faso, Ghana and Equatorial Guinea. Sanaria anticipates application to license a first generation product as early as late 2017, initially to protect adults, and a year later to protect all persons >6 months of age for at least six months. Improved vaccine candidates will be advanced as needed until the following requirements have been met: long-term protection against natural transmission, excellent safety and tolerability, and operational feasibility for population-wide administration. Here we describe the three most developed whole PfSPZ vaccine candidates, associated clinical trials, initial plans for licensure and deployment, and long-term objectives for a final product suitable for mass administration to achieve regional malaria elimination and eventual global eradication.
American Journal of Tropical Medicine and Hygiene | 2014
Seif Shekalaghe; Mastidia Rutaihwa; Peter F. Billingsley; Mwajuma Chemba; Claudia Daubenberger; Eric R. James; Maximillian Mpina; Omar Juma; Tobias Schindler; Eric Huber; Anusha Gunasekera; Anita Manoj; Beatus Simon; Elizabeth Saverino; L. W. Preston Church; Cornelus C. Hermsen; Robert W. Sauerwein; Christopher V. Plowe; Meera Venkatesan; Philip Sasi; Omar Lweno; Paul Mutani; Ali Hamad; Ali Mohammed; Alwisa Urassa; Tutu Mzee; Debbie Padilla; Adam Ruben; B. Kim Lee Sim; Marcel Tanner
Controlled human malaria infection (CHMI) by mosquito bite has been used to assess anti-malaria interventions in > 1,500 volunteers since development of methods for infecting mosquitoes by feeding on Plasmodium falciparum (Pf) gametocyte cultures. Such CHMIs have never been used in Africa. Aseptic, purified, cryopreserved Pf sporozoites, PfSPZ Challenge, were used to infect Dutch volunteers by intradermal injection. We conducted a double-blind, placebo-controlled trial to assess safety and infectivity of PfSPZ Challenge in adult male Tanzanians. Volunteers were injected intradermally with 10,000 (N = 12) or 25,000 (N = 12) PfSPZ or normal saline (N = 6). PfSPZ Challenge was well tolerated and safe. Eleven of 12 and 10 of 11 subjects, who received 10,000 and 25,000 PfSPZ respectively, developed parasitemia. In 10,000 versus 25,000 PfSPZ groups geometric mean days from injection to Pf positivity by thick blood film was 15.4 versus 13.5 (P = 0.023). Alpha-thalassemia heterozygosity had no apparent effect on infectivity. PfSPZ Challenge was safe, well tolerated, and infectious.