B. Lefloch
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. Lefloch.
Astronomy and Astrophysics | 2009
F. Schuller; K. M. Menten; Y. Contreras; F. Wyrowski; P. Schilke; L. Bronfman; T. Henning; C. M. Walmsley; H. Beuther; Sylvain Bontemps; R. Cesaroni; L. Deharveng; Guido Garay; Fabrice Herpin; B. Lefloch; H. Linz; Diego Mardones; V. Minier; S. Molinari; F. Motte; L.-Å. Nyman; V. Revéret; Christophe Risacher; D. Russeil; N. Schneider; L. Testi; T. Troost; T. Vasyunina; M. Wienen; A. Zavagno
Context. Thanks to its excellent 5100 m high site in Chajnantor, the Atacama Pathfinder Experiment (APEX) systematically explore s the southern sky at submillimeter wavelengths, both in continuum and in spectral line emission. Studying continuum emission from interstellar dust is essential to locate the highest densit y regions in the interstellar medium, and to derive their masses, column densities, density structures, and larger scale morpholog ies. In particular, the early stages of (massive) star forma tion are still quite mysterious: only small samples of high-mass proto-stellar or young stellar objects have been studied in detail so far. Aims. Our goal is to produce a large scale, systematic database of massive pre- and proto-stellar clumps in the Galaxy, in order to better understand how and under what conditions star formation takes place. Only a systematic survey of the Galactic Plane can provide the statistical basis for unbiased studies. A well characteriz ed sample of Galactic star-forming sites will deliver an evolutionary sequence and a mass function of high-mass star-forming clumps. Such a systematic survey at submillimeter wavelengths also represents a pioneering work in preparation for Herschel and ALMA. Methods. The APEX telescope is ideally located to observe the inner Milky Way. The recently commissioned Large APEX Bolometer Camera (LABOCA) is a 295-element bolometer array observing at 870 µm, with a beam of 19. ′′ 2. Taking advantage of its large field of view (11. ′ 4) and excellent sensitivity, we have started an unbiased survey of the whole Galactic Plane accessible to APEX, with a typical noise level of 50‐70 mJy/beam: the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). Results. As a first step, we have covered ∼95 deg 2 of the Galactic Plane. These data reveal∼6000 compact sources brighter than 0.25 Jy, or 63 sources per square degree, as well as extended structures, many of them filamentary. About two thirds of the c ompact sources have no bright infrared counterpart, and some of them are likely to correspond to the precursors of (high-mass) proto-stars or proto-clusters. Other compact sources harbor hot cores, compact Hii regions or young embedded clusters, thus tracing more evolved stages after star formation has occurred. Assuming a typical distance of 5 kpc, most sources are clumps smaller than 1 pc with masses from a few 10 to a few 100 M⊙. In this first introductory paper, we show preliminary resul ts from these ongoing observations, and discuss the mid- and long-term perspectives of the survey.
arXiv: Astrophysics of Galaxies | 2009
F. Schuller; Karl M. Menten; Y. Contreras; F. Wyrowski; P. Schilke; L. Bronfman; T. Henning; C. M. Walmsley; H. Beuther; Sylvain Bontemps; R. Cesaroni; L. Deharveng; Guido Garay; Fabrice Herpin; B. Lefloch; H. Linz; Diego Mardones; V. Minier; S. Molinari; F. Motte; L.-Å. Nyman; V. Reveret; C. Risacher; D. Russeil; N. Schneider; L. Testi; T. Troost; Tatiana Vasyunina; M. Wienen; A. Zavagno
Context. Thanks to its excellent 5100 m high site in Chajnantor, the Atacama Pathfinder Experiment (APEX) systematically explore s the southern sky at submillimeter wavelengths, both in continuum and in spectral line emission. Studying continuum emission from interstellar dust is essential to locate the highest densit y regions in the interstellar medium, and to derive their masses, column densities, density structures, and larger scale morpholog ies. In particular, the early stages of (massive) star forma tion are still quite mysterious: only small samples of high-mass proto-stellar or young stellar objects have been studied in detail so far. Aims. Our goal is to produce a large scale, systematic database of massive pre- and proto-stellar clumps in the Galaxy, in order to better understand how and under what conditions star formation takes place. Only a systematic survey of the Galactic Plane can provide the statistical basis for unbiased studies. A well characteriz ed sample of Galactic star-forming sites will deliver an evolutionary sequence and a mass function of high-mass star-forming clumps. Such a systematic survey at submillimeter wavelengths also represents a pioneering work in preparation for Herschel and ALMA. Methods. The APEX telescope is ideally located to observe the inner Milky Way. The recently commissioned Large APEX Bolometer Camera (LABOCA) is a 295-element bolometer array observing at 870 µm, with a beam of 19. ′′ 2. Taking advantage of its large field of view (11. ′ 4) and excellent sensitivity, we have started an unbiased survey of the whole Galactic Plane accessible to APEX, with a typical noise level of 50‐70 mJy/beam: the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). Results. As a first step, we have covered ∼95 deg 2 of the Galactic Plane. These data reveal∼6000 compact sources brighter than 0.25 Jy, or 63 sources per square degree, as well as extended structures, many of them filamentary. About two thirds of the c ompact sources have no bright infrared counterpart, and some of them are likely to correspond to the precursors of (high-mass) proto-stars or proto-clusters. Other compact sources harbor hot cores, compact Hii regions or young embedded clusters, thus tracing more evolved stages after star formation has occurred. Assuming a typical distance of 5 kpc, most sources are clumps smaller than 1 pc with masses from a few 10 to a few 100 M⊙. In this first introductory paper, we show preliminary resul ts from these ongoing observations, and discuss the mid- and long-term perspectives of the survey.
Astronomy and Astrophysics | 2012
Pieter Roelfsema; Frank Helmich; D. Teyssier; V. Ossenkopf; Patrick William Morris; Michael Olberg; R. Shipman; C. Risacher; M. Akyilmaz; R. Assendorp; I. M. Avruch; D. A. Beintema; N. Biver; A. C. A. Boogert; Colin Borys; J. Braine; M. Caris; E. Caux; J. Cernicharo; O. Coeur-Joly; C. Comito; G. de Lange; B. Delforge; P. Dieleman; L. Dubbeldam; Th. de Graauw; Kevin Edwards; Michel Fich; F. Flederus; C. Gal
Aims. In this paper the calibration and in-orbit performance of the Heterodyne Instrument for the Far-Infrared (HIFI) is described. Methods. The calibration of HIFI is based on a combination of ground and in-flight tests. Dedicated ground tests to determine those instrument parameters that can only be measured accurately using controlled laboratory stimuli were carried out in the instrument level test (ILT) campaign. Special in-flight tests during the commissioning phase (CoP) and performance verification (PV) allowed the determination of the remaining instrument parameters. The various instrument observing modes, as specified in astronomical observation templates (AOTs), were validated in parallel during PV by observing selected celestial sources. Results. The initial calibration and in-orbit performance of HIFI has been established. A first estimate of the calibration budget is given. The overall in-flight instrument performance agrees with the original specification. Issues remain at only a few frequencies.
The Astrophysical Journal | 2004
Sandrine Bottinelli; C. Ceccarelli; B. Lefloch; Jonathan P. Williams; A. Castets; E. Caux; Stéphanie Cazaux; S. Maret; Berengere Parise; A. G. G. M. Tielens
We report the detection of complex molecules (HCOOCH3, HCOOH, and CH3CN), signposts of a hot core-like region, toward the low-mass Class 0 source NGC 1333 IRAS 4A. This is the second low-mass protostar in which such complex molecules have been searched for and reported, the other source being IRAS 16293-2422. It is therefore likely that compact (a few tens of AU) regions of dense and warm gas, where the chemistry is dominated by the evaporation of grain mantles and where complex molecules are found, are common in low-mass Class 0 sources. Given that the chemical formation timescale is much shorter than the gas hot-core crossing time, it is not clear whether the reported complex molecules are formed on the grain surfaces (first-generation molecules) or in the warm gas by reactions involving the evaporated mantle constituents (second-generation molecules). We do not find evidence for large differences in the molecular abundances, normalized to the formaldehyde abundance, between the two solar-type protostars, suggesting perhaps a common origin.
Astronomy and Astrophysics | 2002
Berengere Parise; C. Ceccarelli; A. G. G. M. Tielens; Eric Herbst; B. Lefloch; E. Caux; A. Castets; I. Mukhopadhyay; L. Pagani; Laurent Loinard
We report the first detection of doubly-deuterated methanol (CHD2OH), as well as firm detections of the two singly-deuterated isotopomers of methanol (CH2DOH and CH3OD), towards the solar-type protostar IRAS 16293 2422. From the present multifrequency observations, we derive the following abundance ratios: (CHD 2OH)=(CH3OH)= 0:2 0:1, (CH2DOH)=(CH3OH)= 0:9 0:3, (CH3OD)=(CH3OH)= 0:04 0:02. The total abundance of the deuterated forms of methanol is greater than that of its normal hydrogenated counterpart in the circumstellar material of IRAS 16293 2422, a circumstance not previously encountered. Formaldehyde, which is thought to be the chemical precursor of methanol, possesses a much lower fraction of deuterated isotopomers (20%) with respect to the main isotopic form in IRAS 16293 2422. The observed frac- tionation of methanol and formaldehyde provides a severe challenge to both gas-phase and grain-surface models of deuteration. Two examples of the latter model are roughly in agreement with our observations of CHD2OH and CH2DOH if the accreting gas has a large (0.2-0.3) atomic D/H ratio. However, no gas-phase model predicts such a high atomic D/H ratio, and hence some key ingredient seems to be missing.
The Astrophysical Journal | 2004
Sandrine Bottinelli; C. Ceccarelli; Roberto Neri; Jonathan P. Williams; E. Caux; Stéphanie Cazaux; B. Lefloch; S. Maret; A. G. G. M. Tielens
Complex organic molecules have previously been discovered in solar-type protostars, raising the questions of where and how they form in the envelope. Possible formation mechanisms include grain mantle evaporation, the interaction of the outflow with its surroundings, and/or the impact of UV/X-rays inside the cavities. In this Letter we present the first interferometric observations of two complex molecules, CH3CN and HCOOCH3, toward the solar-type protostar IRAS 16293-2422. The images show that the emission originates from two compact regions centered on the two components of the binary system. We discuss how these results favor the grain mantle evaporation scenario, and we investigate the implications of these observations for the chemical composition and physical and dynamical state of the two components.
Astronomy and Astrophysics | 2002
Aurore Bacmann; B. Lefloch; C. Ceccarelli; A. Castets; Juergen Steinacker; Laurent Loinard
We present new results on CO depletion in a sample of nearby pre-stellar cores, based on observations of the millimeter C 17 O and C 18 O lines and the 1.3 mm dust emission with the IRAM 30 m telescope. In most cases, the distribution of CO is much flatter than that of the dust, whereas other tracers, like
The Astrophysical Journal | 2003
Aurore Bacmann; B. Lefloch; C. Ceccarelli; Juergen Steinacker; A. Castets; Laurent Loinard
\rm N_2H^{+}
Astronomy and Astrophysics | 2004
S. Maret; C. Ceccarelli; E. Caux; A. G. G. M. Tielens; Jes K. Jorgensen; E. F. van Dishoeck; Aurore Bacmann; A. Castets; B. Lefloch; Laurent Loinard; Berengere Parise; Fredrik L. Schöier
, still probe the latter. In the centre of these objects, we estimate CO to be underabundant by a factor 4–15 depending on the cores. The CO underabundance is more pronounced in the central regions and appears to decrease with increasing distance from the core centre. This underabundance is most likely due to the freezing out of CO onto the dust grains in the cold, dense parts of the cores. We find evidence for an increase of the CO depletion degree with the core density.
Astronomy and Astrophysics | 2006
Berengere Parise; C. Ceccarelli; A. G. G. M. Tielens; A. Castets; E. Caux; B. Lefloch; S Maret
We report the detection of D2CO in a sample of starless dense cores, in which we previously measured the degree of CO depletion. The deuterium fractionation is found to be extremely high, [D2CO]/[H2CO] ~ 1%-10%, similar to that reported in low-mass protostars. This provides convincing evidence that D2CO is formed in the cold prestellar cores and later desorbed when the gas warms up in protostars. We find that the cores with the highest CO depletions have also the largest [D2CO]/[H2CO] ratios, supporting the theoretical prediction that deuteration increases with increasing CO depletion.