Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. N. Noller is active.

Publication


Featured researches published by B. N. Noller.


Journal of Toxicology and Environmental Health | 2007

Public Health Risks from Heavy Metals and Metalloids Present in Traditional Chinese Medicines

K. Cooper; B. N. Noller; Des Connell; Jimmy Yu; R. Sadler; Henry Olszowy; Gary Golding; Ujang Tinggi; Michael R. Moore; Stephen P Myers

Out of 247 traditional Chinese medicines (TCM) investigated, a proportion were contaminated with arsenic (5–15%), lead (∼5%), and mercury (∼65%). Some preparations exceeded the tolerable daily intake (TDI) for males and females for arsenic (4 and 5 products, respectively), lead (1 and 2 products), and mercury (5 and 7 products). These exceedances were as high as 2760-fold, which posed a potential danger to public health. As many users are known to self-prescribe, there is a substantial risk of poisoning from the consumption of these contaminated TCM.


Naturwissenschaften | 2007

Insect mandibles-comparative mechanical properties and links with metal incorporation

Bronwen W. Cribb; Aaron Stewart; Han Huang; R. W. Truss; B. N. Noller; Ronald Rasch; Myron P. Zalucki

A number of arthropod taxa contain metals in their mandibles (jaws), such as zinc, manganese, iron, and calcium. The occurrence of zinc and its co-located halogen chlorine have been studied in relation to the mechanical properties and shown to be linked in a direct fashion with increasing concentration. Hardness along with elastic modulus (stiffness) has also been linked to zinc and halogen concentration in some marine polychaete worms. The metal appears to be incorporated within the biological matrix, possibly bonding with proteins. However, the comparative advantage of metal inclusion has not been tested. It is possible that without metals, alternative mechanisms are used to achieve hardness of equal value in similar ‘tools’ such as mandibles. This question has direct bearing on the significance of metal hardening. In the present article, we compare across mandibles from six termite species, including samples with major zinc concentration, minor manganese, and no metals. Nanoindentation, electron microscopy, and electron microanalysis are used to assess metal concentration, form, and mechanical properties. The data demonstrate that termite mandibles lacking metals when fully developed have lower values for hardness and elastic modulus. Zinc is linked to a relative 20% increase in hardness when compared with mandibles devoid of metals. The similar transition metal, manganese, found in minor concentrations, is not linked to any significant increase in these mechanical properties. This raises the question of the function of manganese, which is as commonly found in insect mandibles as zinc and often located in the same mandibles.


Toxicology Letters | 2003

A field study conducted at Kidston Gold Mine, to evaluate the impact of arsenic and zinc from mine tailing to grazing cattle

S. L. Bruce; B. N. Noller; A. H. Grigg; B. F. Mullen; D. R. Mulligan; P. J. Ritchie; N. A. Currey; J. C. Ng

The grazing trial at Kidston Gold Mine, North Queensland, was aimed specifically to assess the uptake of metals from the tailing and the potential for unacceptable contamination of saleable meat. Further aims included estimating metal dose rates and identifying potential exposure pathways including plant uptake of heavy metals, mine tailings adhered to plants and direct ingestion of mine tailing. It was found that of the 11 metals analysed (As, Zn, Co, Cd, Cr, Sn, Pb, Sb, Hg, Se and Ni) in the animals liver, muscle and blood during the 8-month trial period, only accumulation of arsenic and zinc occurred. A risk assessment including these two metals was conducted to determine the potential for chronic metal toxicity and long-term contamination, using the estimates of metal dose rate. It was concluded that no toxicity or long-term contamination in cattle was likely at this site. Management procedures were therefore not required at this site; however, the results highlight percent ground cover and standing dry matter (DM) as important factors in decreasing metal exposure from direct ingestion of tailings and dust adhered to plants.


Journal of Toxicology and Environmental Health | 2007

In Vitro Physiologically Based Extraction Test (PBET) and Bioaccessibility of Arsenic and Lead from Various Mine Waste Materials

S. L. Bruce; B. N. Noller; V. P. Matanitobua; J. C. Ng

In vivo models show that the bioavailability of soil contaminants varies between site and type of matrix. Studies demonstrated that assuming 100% bioavailability of arsenic (As) and lead (Pb) from soils and mine waste materials overestimates the risk associated with human exposure. In in vitro systems, the simulated bioavailability of a contaminant is referred to as the “bioaccessibility” and is used as an alternative quantitative indicator for in vivo derived bioavailability estimates. The general concept of the in vitro extraction test is to predict the bioavailability of inorganic substances from solid matrices by simulating the gastrointestinal tract (GIT) environment. The aims of this study were to: (1) investigate the bioaccessibility of As and Pb from various mine wastes, including tailings, heap leach, and waste rock, using a physiologically based extraction test (PBET); (2) validate the bioaccessibility values from PBET with in vivo bioavailability values measured using animal models; and (3) correlate PBET results with the bioavailability values measured from alternative in vivo models (rats and cattle, from Bruce, 2004). Significant correlation was observed between bioaccessibility values from PBET, and bioavailability values generated for both rats and cattle, demonstrating the potential to utilize PBET as a relatively inexpensive alternative to in vivo models for bioavailability assessment.


Functional Plant Biology | 2008

Spray deposition on plant surfaces: a modelling approach

G. J. Dorr; Jim Hanan; S. W. Adkins; Andrew J. Hewitt; Chris O'Donnell; B. N. Noller

For pesticides to effectively manage pests, they must first be deposited on the target (typically a plant surface) in a manner in which the active ingredient(s) can be readily taken up by the target organism. A plant architectural model that enables the location of various plant components in 3-D space combined with a particle trajectory model has been used to study the interception of spray droplets by various vegetative elements. Results from the simulation are compared with wind tunnel studies of glyphosate deposition on cotton (Gossypium hirsutum L. var. Sicala), sow thistle (Sonchus oleraceus L.) and wild oats (Avena ludoviciana Durieu). An air induction flat fan nozzle (AI110015 at 500 kPa pressure) and an extended range flat fan nozzle (XR11002 at 280 kPa pressure) were predicted to have similar glyphosate deposition on cotton and sow thistle plants, whereas the extended range nozzle resulted in higher deposit on wild oats. Spray deposition (µg cm-2) on wild oat plants at the 5-leaf stage was more than double the amount of deposition on sow thistle or wild oat plants at the 2-leaf stage. The model was in good agreement with the experimental data except that it tended to over predict deposition on sow thistle plants.


Environmental Science & Technology | 2011

Dissolved Organic Carbon Reduces Uranium Bioavailability and Toxicity. 2. Uranium(VI) Speciation and Toxicity to Three Tropical Freshwater Organisms

Melanie A. Trenfield; J. C. Ng; B. N. Noller; Scott J. Markich; Rick A. van Dam

The influence of dissolved organic carbon (DOC) on the toxicity of uranium (U) to three Australian tropical freshwater species, the Northern Trout Gudgeon (Mogurnda mogurnda), green hydra (Hydra viridissima) and unicellular green alga (Chlorella sp.) was assessed. Exposures were conducted in synthetic soft water without DOC and with DOC added in the form of standard Suwannee River Fulvic Acid (SRFA). Organisms were exposed to a range of U concentrations at a range of DOC concentrations (0-20 mg L(-1)). U toxicity was up to 20 times less in water containing 20 mg L(-1) DOC, relative to DOC-free test waters. U toxicity was also assessed using natural water from a tropical Australian billabong containing 10 mg L(-1) DOC. U toxicity was up to ten times less in the billabong water, relative to DOC--free test waters. SRFA was twice as effective at reducing U toxicity as the billabong water at equivalent DOC concentrations. Geochemical speciation modeling confirmed the decreased U toxicity that resulted from both DOC sources was primarily due to a decrease in the free uranyl ion (UO2(2+)) through complexation with DOC. A predictive model is presented for each of the organisms that can be used to predict U toxicity at a given U and DOC concentration.


Analytical Chemistry | 2012

Evaluation and Application of the Diffusive Gradients in Thin Films Technique Using a Mixed-Binding Gel Layer for Measuring Inorganic Arsenic and Metals in Mining Impacted Water and Soil

Trang Huynh; Hao Zhang; B. N. Noller

The diffusive gradients in thin films (DGT) equipped with a Chelex or ferrihydrite binding gel has been designed to enable the measurement of either labile metal species or inorganic arsenic, respectively. In the mine impacted environment, metals and metalloids commonly coexist in a variety of species. This study, for the first time reports the performance of the DGT with a mixed-binding layer (MBL), consisting of Chelex and ferrihydrite for measurements of both metals and arsenic in a single assay. The MBL that consists of a combination of Chelex and ferrihydrite at a ratio of 1:2 has the greatest binding capacity for arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). The elemental concentrations measured by using MBL-DGT (C(DGT)) were comparable (92-104%) with the original test solution concentrations (C(SOL)). The measurement of As by using MBL-DGT was consistent across a wide pH range (3-8) and ionic strength (0.001-0.1 M). At high pH (9), As measurement was slightly affected (∼80%). The measurements of Cd, Pb, and Zn were affected at low pH (<3) and high pH (9). Measurements of Cd, Cu, and Pb were affected at low ionic strength (0.001 M). At high ionic strength (0.1 M), measurements of Cd; Cu and Pb were slightly affected. The capacity of MBL-DGT for quantitative measurement in a multielements solution is effectively limited to 15 μg for As and 70 μg for metals per MBL-DGT device. Good correlations (p < 0.01) between MBL-DGT measurements and ferrihydrite or Chelex DGT were obtained for As, Cd, Cu, Pb, and Zn in water and soil with exception for Cd and Cu (p < 0.05) when deployed in soil.


Environmental Science & Technology | 2011

Dissolved organic carbon reduces uranium bioavailability and toxicity. 1. Characterization of an aquatic fulvic acid and its complexation with uranium[VI].

Melanie A. Trenfield; Suzanne McDonald; Krisztina Kovacs; Emily K. Lesher; Jennifer M. Pringle; Scott J. Markich; J. C. Ng; B. N. Noller; Paul L. Brown; Rick A. van Dam

Fulvic acid (FA) from a tropical Australian billabong (lagoon) was isolated with XAD-8 resin and characterized using size exclusion chromatography, solid state cross-polarization magic angle spinning, 13C nuclear magnetic resonance spectroscopy, elemental analysis, and potentiometric acid-base titration. Physicochemical characteristics of the billabong FA were comparable with those of the Suwannee River Fulvic Acid (SRFA) standard. The greater negative charge density of the billabong FA suggested it contained protons that were more weakly bound than those of SRFA, with the potential for billabong water to complex less metal contaminants, such as uranium (U). This may subsequently influence the toxicity of metal contaminants to resident freshwater organisms. The complexation of U with dissolved organic carbon (DOC) (10 mg L(-1)) in billabong water was calculated using the HARPHRQ geochemical speciation model and also measured using flow field-flow fractionation combined with inductively coupled plasma mass-spectroscopy. Agreement between both methods was very good (within 4% as U-DOC). The results suggest that in billabong water at pH 6.0, containing an average DOC of 10 mg L(-1) and a U concentration of 90 μg L(-1), around 10% of U is complexed with DOC.


Naturwissenschaften | 2008

Unique zinc mass in mandibles separates drywood termites from other groups of termites

Bronwen W. Cribb; Aaron Stewart; Han Huang; R. W. Truss; B. N. Noller; Ronald Rasch; Myron P. Zalucki

Previously, the presence of metals in arthropod mandibles has been linked with harder cuticle, and in termites, a 20% increase in hardness has been found for mandibles containing major quantities of zinc. The current study utilises electron microscopy and energy-dispersive X-ray microanalysis to assess incidence and abundance of metals in all extant subfamilies of the Isoptera. The basal clades contain no zinc and little to no manganese in the cutting edge of the mandible cuticle, suggesting that these states are ancestral for termites. However, experimentation with mandibles in vitro indicates the presence of some elements of the cuticular biochemistry necessary to enable uptake of zinc. The Termopsidae, Serritermitidae, Rhinotermitidae and Termitidae all contain minor quantities of manganese, while trace to minor quantities of zinc occur in all except the Serritermitidae. In contrast, all Kalotermitidae or drywood termites contain major levels of zinc in the mandible edge. Diet and life type are explored as links to metal profiles across the termites. The presence of harder mandibles in the drywood termites may be related to lack of access to free water with which to moisten wood. Scratch tests were applied to a set of mandibles. The coefficient of friction for Cryptotermes primus (Kalotermitidae) mandibles, when compared with species from other subfamilies, indicates that zinc-containing mandibles are likely to be more scratch resistant.


Chemosphere | 2003

Silica reduces the toxicity of aluminium to a tropical freshwater fish (Mogurnda mogurnda)

Caroline Camilleri; Scott J. Markich; B. N. Noller; Catriona J. Turley; G. Parker; Rick A. van Dam

The toxicity of aluminium (Al) to fish in acidic waters has been well documented. It was therefore expected that Al toxicity would be significant in fish communities in Gadjarrigamarndah (Gadji) Creek, a seasonally flowing stream in tropical northern Australia. This creek receives acidic groundwater containing elevated concentrations of Al from earlier land irrigation of treated mine tailings water from the former Nabarlek uranium mine. It was hypothesised that Al toxicity was reduced by high levels of silica (Si) in the water, and the subsequent formation of Al-silicate complexes. This prompted a laboratory assessment of the toxicity of Gadji Creek water to sac-fry of the native fish, Mogurnda mogurnda, followed by more detailed investigation of the toxicity of Al and the influence of Si in reducing Al toxicity. No mortality of M. mogurnda sac-fry was observed in two toxicity tests using Gadji Creek water collected in August 1997 and September 1998. The majority of Al (80-95%) was calculated to be complexed with humic substances and sulfate, with < 1% being complexed with silicate. Assessment of the influence of silica on the acute toxicity of Al in the absence of natural organic complexants (i.e. in reconstituted freshwater, pH 5) revealed that Si reduced Al toxicity. As the molar ratio of Si:Al was increased, the percent survival of M. mogurnda sac-fry increased until there was no significant (P > 0.05) difference from the controls. However, speciation modelling again predicted that little (< 3%) Al complexed with silicate, with the speciation and bioavailability of Al remaining constant as the molar ratio of Si:Al increased. Therefore, the original hypothesis that Al-silicate complexes in solution reduced the toxicity of Al to M. mogurnda could not be supported. This potential mechanism, and an alternative hypothesis, that Si competes with Al for binding sites at the fish gill surface, requires further investigation.

Collaboration


Dive into the B. N. Noller's collaboration.

Top Co-Authors

Avatar

J. C. Ng

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. L. Bruce

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trang Huynh

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prosun Bhattacharya

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge