Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Nelson Chau is active.

Publication


Featured researches published by B. Nelson Chau.


Science Translational Medicine | 2012

MicroRNA 21 promotes fibrosis of the kidney by silencing metabolic pathways

B. Nelson Chau; Cuiyan Xin; Jochen C. Hartner; Shuyu Ren; Ana P. Castano; Geoffrey Linn; Jian Li; Phong T. Tran; Vivek Kaimal; Xinqiang Huang; Aaron N. Chang; Shenyang Li; Aarti Kalra; Monica Grafals; Didier Portilla; Deidre A. MacKenna; Stuart H. Orkin; Jeremy S. Duffield

MicroRNA-21 contributes to fibrosis in the kidney by posttranscriptionally regulating lipid metabolism genes. Defeating Fibrosis Although small—just 22 nucleotides in length—microRNA-21 (miR-21) packs a mighty punch, posttranscriptionally regulating the expression of many genes. Furthermore, miR-21 dysregulation has been linked to cardiac disease and cancer. Now, Chau et al. show that dysregulated miR-21 also contributes to kidney fibrosis, an inappropriate wound-healing response that promotes organ failure. The authors first identified miRNAs that were up-regulated in two mouse models of kidney injury. On the basis of preliminary analyses, Chau et al. focused on miR-21. In mice, miR-21 is up-regulated in the kidney soon after injury, before fibrosis appears. Moreover, miR-21 is up-regulated in human kidneys from patients with problems such as acute kidney injury. Although mice that lack miR-21 are healthy and display relatively normal gene expression in the kidney, after injury, a derepressed set of miR-21 target mRNAs becomes apparent, and they develop much less fibrosis than their littermates that express miR-21. In normal mice, inhibition of miR-21 with complementary oligonucleotides likewise reduces kidney fibrosis after injury. To understand how miR-21 amplifies kidney fibrosis, the authors examined kidney gene expression profiles in mice with and without miR-21 after kidney injury. About 700 genes were derepressed in kidneys from mice without miR-21; surprisingly, genes involved in metabolic pathways—particularly involving fatty acid and lipid oxidation—were among the up-regulated genes, whereas those involved in immune or cell proliferation pathways were not. One derepressed gene, encoding peroxisome proliferator–activated receptor α (PPARα), a regulator of lipid metabolism, is a direct target of miR-21. Overexpression of PPARα in the kidney during injury inhibited fibrosis in mice; conversely, in mice that lacked PPARα, inhibition of miR-21 no longer protected against kidney fibrosis. The finding that miR-21 is a major player in kidney fibrosis suggests that drugs that inhibit miR-21, like the complementary oligonucleotides used in this study, might prove to be useful therapies in humans. Scarring of the kidney is a major public health concern, directly promoting loss of kidney function. To understand the role of microRNA (miRNA) in the progression of kidney scarring in response to injury, we investigated changes in miRNA expression in two kidney fibrosis models and identified 24 commonly up-regulated miRNAs. Among them, miR-21 was highly elevated in both animal models and in human transplanted kidneys with nephropathy. Deletion of miR-21 in mice resulted in no overt abnormality. However, miR-21−/− mice suffered far less interstitial fibrosis in response to kidney injury, a phenotype duplicated in wild-type mice treated with anti–miR-21 oligonucleotides. Global derepression of miR-21 target mRNAs was readily detectable in miR-21−/− kidneys after injury. Analysis of gene expression profiles up-regulated in the absence of miR-21 identified groups of genes involved in metabolic pathways, including the lipid metabolism pathway regulated by peroxisome proliferator–activated receptor-α (Pparα), a direct miR-21 target. Overexpression of Pparα prevented ureteral obstruction–induced injury and fibrosis. Pparα deficiency abrogated the antifibrotic effect of anti–miR-21 oligonucleotides. miR-21 also regulated the redox metabolic pathway. The mitochondrial inhibitor of reactive oxygen species generation Mpv17l was repressed by miR-21, correlating closely with enhanced oxidative kidney damage. These studies demonstrate that miR-21 contributes to fibrogenesis and epithelial injury in the kidney in two mouse models and is a candidate target for antifibrotic therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Functional genomics identifies therapeutic targets for MYC-driven cancer

Masafumi Toyoshima; Heather L. Howie; Maki Imakura; Ryan M. Walsh; James Annis; Aaron N. Chang; Jason Frazier; B. Nelson Chau; Andrey Loboda; Peter S. Linsley; Michele A. Cleary; Julie R. Park; Carla Grandori

MYC oncogene family members are broadly implicated in human cancers, yet are considered “undruggable” as they encode transcription factors. MYC also carries out essential functions in proliferative tissues, suggesting that its inhibition could cause severe side effects. We elected to identify synthetic lethal interactions with c-MYC overexpression (MYC-SL) in a collection of ∼3,300 druggable genes, using high-throughput siRNA screening. Of 49 genes selected for follow-up, 48 were confirmed by independent retesting and approximately one-third selectively induced accumulation of DNA damage, consistent with enrichment in DNA-repair genes by functional annotation. In addition, genes involved in histone acetylation and transcriptional elongation, such as TRRAP and BRD4, were identified, indicating that the screen revealed known MYC-associated pathways. For in vivo validation we selected CSNK1e, a kinase whose expression correlated with MYCN amplification in neuroblastoma (an established MYC-driven cancer). Using RNAi and available small-molecule inhibitors, we confirmed that inhibition of CSNK1e halted growth of MYCN-amplified neuroblastoma xenografts. CSNK1e had previously been implicated in the regulation of developmental pathways and circadian rhythms, whereas our data provide a previously unknown link with oncogenic MYC. Furthermore, expression of CSNK1e correlated with c-MYC and its transcriptional signature in other human cancers, indicating potential broad therapeutic implications of targeting CSNK1e function. In summary, through a functional genomics approach, pathways essential in the context of oncogenic MYC but not to normal cells were identified, thus revealing a rich therapeutic space linked to a previously “undruggable” oncogene.


Journal of Clinical Investigation | 2015

Anti–microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways

Ivan G. Gomez; Deidre A. MacKenna; Bryce G. Johnson; Vivek Kaimal; Allie M. Roach; Shuyu Ren; Naoki Nakagawa; Cuiyan Xin; Rick Newitt; Shweta Pandya; Tai He Xia; Xueqing Liu; Dorin-Bogdan Borza; Monica Grafals; Stuart J. Shankland; Jonathan Himmelfarb; Didier Portilla; Shiguang Liu; B. Nelson Chau; Jeremy S. Duffield

MicroRNA-21 (miR-21) contributes to the pathogenesis of fibrogenic diseases in multiple organs, including the kidneys, potentially by silencing metabolic pathways that are critical for cellular ATP generation, ROS production, and inflammatory signaling. Here, we developed highly specific oligonucleotides that distribute to the kidney and inhibit miR-21 function when administered subcutaneously and evaluated the therapeutic potential of these anti-miR-21 oligonucleotides in chronic kidney disease. In a murine model of Alport nephropathy, miR-21 silencing did not produce any adverse effects and resulted in substantially milder kidney disease, with minimal albuminuria and dysfunction, compared with vehicle-treated mice. miR-21 silencing dramatically improved survival of Alport mice and reduced histological end points, including glomerulosclerosis, interstitial fibrosis, tubular injury, and inflammation. Anti-miR-21 enhanced PPARα/retinoid X receptor (PPARα/RXR) activity and downstream signaling pathways in glomerular, tubular, and interstitial cells. Moreover, miR-21 silencing enhanced mitochondrial function, which reduced mitochondrial ROS production and thus preserved tubular functions. Inhibition of miR-21 was protective against TGF-β-induced fibrogenesis and inflammation in glomerular and interstitial cells, likely as the result of enhanced PPARα/RXR activity and improved mitochondrial function. Together, these results demonstrate that inhibition of miR-21 represents a potential therapeutic strategy for chronic kidney diseases including Alport nephropathy.


Journal of Clinical Investigation | 2014

Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension

Thomas Bertero; Yu Lu; Sofia Annis; Andrew Hale; Balkrishen Bhat; Rajan Saggar; Rajeev Saggar; W. Dean Wallace; David J. Ross; Sara O. Vargas; Brian B. Graham; Rahul Kumar; Stephen M. Black; Sohrab Fratz; Jeffrey R. Fineman; James West; Kathleen J. Haley; Aaron B. Waxman; B. Nelson Chau; Katherine A. Cottrill; Stephen Y. Chan

Development of the vascular disease pulmonary hypertension (PH) involves disparate molecular pathways that span multiple cell types. MicroRNAs (miRNAs) may coordinately regulate PH progression, but the integrative functions of miRNAs in this process have been challenging to define with conventional approaches. Here, analysis of the molecular network architecture specific to PH predicted that the miR-130/301 family is a master regulator of cellular proliferation in PH via regulation of subordinate miRNA pathways with unexpected connections to one another. In validation of this model, diseased pulmonary vessels and plasma from mammalian models and human PH subjects exhibited upregulation of miR-130/301 expression. Evaluation of pulmonary arterial endothelial cells and smooth muscle cells revealed that miR-130/301 targeted PPARγ with distinct consequences. In endothelial cells, miR-130/301 modulated apelin-miR-424/503-FGF2 signaling, while in smooth muscle cells, miR-130/301 modulated STAT3-miR-204 signaling to promote PH-associated phenotypes. In murine models, induction of miR-130/301 promoted pathogenic PH-associated effects, while miR-130/301 inhibition prevented PH pathogenesis. Together, these results provide insight into the systems-level regulation of miRNA-disease gene networks in PH with broad implications for miRNA-based therapeutics in this disease. Furthermore, these findings provide critical validation for the evolving application of network theory to the discovery of the miRNA-based origins of PH and other diseases.


Embo Molecular Medicine | 2015

Genetic and hypoxic alterations of the microRNA‐210‐ISCU1/2 axis promote iron–sulfur deficiency and pulmonary hypertension

Kevin P. White; Yu Lu; Sofia Annis; Andrew Hale; B. Nelson Chau; James E. Dahlman; Craig Hemann; Alexander R. Opotowsky; Sara O. Vargas; Ivan O. Rosas; Mark A. Perrella; Juan C. Osorio; Kathleen J. Haley; Brian B. Graham; Rahul Kumar; Rajan Saggar; Rajeev Saggar; W. Dean Wallace; David J. Ross; Omar F. Khan; Andrew Bader; Bernadette R. Gochuico; Majed Matar; Kevin Polach; Nicolai M. Johannessen; Haydn M. Prosser; Daniel G. Anderson; Robert Langer; Jay L. Zweier; Laurence A. Bindoff

Iron–sulfur (Fe‐S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miR‐210‐ISCU1/2 axis cause Fe‐S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miR‐210 and repression of the miR‐210 targets ISCU1/2 down‐regulated Fe‐S levels. In mouse and human vascular and endothelial tissue affected by PH, miR‐210 was elevated accompanied by decreased ISCU1/2 and Fe‐S integrity. In mice, miR‐210 repressed ISCU1/2 and promoted PH. Mice deficient in miR‐210, via genetic/pharmacologic means or via an endothelial‐specific manner, displayed increased ISCU1/2 and were resistant to Fe‐S‐dependent pathophenotypes and PH. Similar to hypoxia or miR‐210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exercise‐induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miR‐210‐ISCU1/2 regulatory axis is a pathogenic lynchpin causing Fe‐S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings.


Cell Reports | 2015

Matrix Remodeling Promotes Pulmonary Hypertension through Feedback Mechanoactivation of the YAP/TAZ-miR-130/301 Circuit

Thomas Bertero; Katherine A. Cottrill; Yu Lu; Christina Mallarino Haeger; Paul B. Dieffenbach; Sofia Annis; Andrew Hale; Balkrishen Bhat; Vivek Kaimal; Ying Yi Zhang; Brian B. Graham; Rahul Kumar; Rajan Saggar; Rajeev Saggar; W. Dean Wallace; David J. Ross; Stephen M. Black; Sohrab Fratz; Jeffrey R. Fineman; Sara O. Vargas; Kathleen J. Haley; Aaron B. Waxman; B. Nelson Chau; Stephen Y. Chan

Pulmonary hypertension (PH) is a deadly vascular disease with enigmatic molecular origins. We found that vascular extracellular matrix (ECM) remodeling and stiffening are early and pervasive processes that promote PH. In multiple pulmonary vascular cell types, such ECM stiffening induced the microRNA-130/301 family via activation of the co-transcription factors YAP and TAZ. MicroRNA-130/301 controlled a PPAR?-APOE-LRP8 axis, promoting collagen deposition and LOX-dependent remodeling and further upregulating YAP/TAZ via a mechanoactive feedback loop. In turn, ECM remodeling controlled pulmonary vascular cell crosstalk via such mechanotransduction, modulation of secreted vasoactive effectors, and regulation of associated microRNA pathways. In vivo, pharmacologic inhibition of microRNA-130/301, APOE, or LOX activity ameliorated ECM remodeling and PH. Thus, ECM remodeling, as controlled by the YAP/TAZ-miR-130/301 feedback circuit, is an early PH trigger and offers combinatorial therapeutic targets for this devastating disease.


Journal of Biological Chemistry | 2015

The microRNA-130/301 family controls vasoconstriction in pulmonary hypertension.

Thomas Bertero; Katherine A. Cottrill; Adrienn Krauszman; Yu Lu; Sofia Annis; Andrew Hale; Balkrishen Bhat; Aaron B. Waxman; B. Nelson Chau; Wolfgang M. Kuebler; Stephen Y. Chan

Background: The microRNA-130/301 family regulates pulmonary hypertension (PH), but its breadth of activity remains undefined. Results: Predicted by network analysis, microRNA-130/301 members regulate vasoactive factors such as endothelin-1 for pulmonary vascular cross-talk. Conclusion: The microRNA-130/301 family promotes vasoconstriction in PH. Significance: This microRNA-based mechanism of vascular cross-talk is central to the systems-wide actions of microRNA-130/301 in PH. Pulmonary hypertension (PH) is a complex disorder, spanning several known vascular cell types. Recently, we identified the microRNA-130/301 (miR-130/301) family as a regulator of multiple pro-proliferative pathways in PH, but the true breadth of influence of the miR-130/301 family across cell types in PH may be even more extensive. Here, we employed targeted network theory to identify additional pathogenic pathways regulated by miR-130/301, including those involving vasomotor tone. Guided by these predictions, we demonstrated, via gain- and loss-of-function experimentation in vitro and in vivo, that miR-130/301-specific control of the peroxisome proliferator-activated receptor γ regulates a panel of vasoactive factors communicating between diseased pulmonary vascular endothelial and smooth muscle cells. Of these, the vasoconstrictive factor endothelin-1 serves as an integral point of communication between the miR-130/301-peroxisome proliferator-activated receptor γ axis in endothelial cells and contractile function in smooth muscle cells. Thus, resulting from an in silico analysis of the architecture of the PH disease gene network coupled with molecular experimentation in vivo, these findings clarify the expanded role of the miR-130/301 family in the global regulation of PH. They further emphasize the importance of molecular cross-talk among the diverse cellular populations involved in PH.


Cancer Research | 2009

Identification of SULF2 as a Novel Transcriptional Target of p53 by Use of Integrated Genomic Analyses

B. Nelson Chau; Robert L. Diaz; Matthew A. Saunders; Chun Cheng; Aaron N. Chang; Paul Warrener; Jeffrey Bradshaw; Peter S. Linsley; Michele A. Cleary

Microarray analysis has been useful for identifying the targets of many transcription factors. However, gene expression changes in response to transcription factor perturbation reveal both direct transcriptional targets and secondary gene regulation. By integrating RNA interference, gene expression profiling, and chromatin immunoprecipitation technologies, we identified a set of 32 direct transcriptional targets of the tumor suppressor p53. Of these 32 genes, 11 are not currently associated with the core p53 pathway. From among these novel pathway members, we focused on understanding the connection between p53 and SULF2, which encodes an extracellular heparan sulfate 6-O-endosulfatase that modulates the binding of growth factors to their cognate receptors and that has been shown to function as a tumor suppressor. Genetic and pharmacologic perturbation of p53 directly influences SULF2 expression, and similar to silencing of TP53, RNA interference-mediated suppression of SULF2 results in an impaired senescence response of cells to genotoxic stress. Thus, our integrated genomic approach has led to the identification of a novel mediator of p53 network biology.


Cell Metabolism | 2014

Let-7 Coordinately Suppresses Components of the Amino Acid Sensing Pathway to Repress mTORC1 and Induce Autophagy

Amy N. Dubinsky; Somasish G. Dastidar; Cynthia L. Hsu; Rabaab Zahra; Stevan N. Djakovic; Sónia Duarte; Christine Esau; Brian Spencer; Travis D. Ashe; Kimberlee M. Fischer; Deidre A. MacKenna; Bryce L. Sopher; Eliezer Masliah; Terry Gaasterland; B. Nelson Chau; Luís Pereira de Almeida; Bradley E. Morrison; Albert R. La Spada

Macroautophagy (hereafter autophagy) is the major pathway by which macromolecules and organelles are degraded. Autophagy is regulated by the mTOR signaling pathway-the focal point for integration of metabolic information, with mTORC1 playing a central role in balancing biosynthesis and catabolism. Of the various inputs to mTORC1, the amino acid sensing pathway is among the most potent. Based upon transcriptome analysis of neurons subjected to nutrient deprivation, we identified let-7 microRNA as capable of promoting neuronal autophagy. We found that let-7 activates autophagy by coordinately downregulating the amino acid sensing pathway to prevent mTORC1 activation. Let-7 induced autophagy in the brain to eliminate protein aggregates, establishing its physiological relevance for in vivo autophagy modulation. Moreover, peripheral delivery of let-7 anti-miR repressed autophagy in muscle and white fat, suggesting that let-7 autophagy regulation extends beyond CNS. Hence, let-7 plays a central role in nutrient homeostasis and proteostasis regulation in higher organisms.


RNA | 2012

Disease-linked microRNA-21 exhibits drastically reduced mRNA binding and silencing activity in healthy mouse liver

John R. Androsavich; B. Nelson Chau; Balkrishen Bhat; Peter S. Linsley; Nils G. Walter

MicroRNAs (miRNAs) bind to mRNAs and fine-tune protein output by affecting mRNA stability and/or translation. miR-21 is a ubiquitous, highly abundant, and stress-responsive miRNA linked to several diseases, including cancer, fibrosis, and inflammation. Although the RNA silencing activity of miR-21 in diseased cells has been well documented, the roles of miR-21 under healthy cellular conditions are not well understood. Here, we show that pharmacological inhibition or genetic deletion of miR-21 in healthy mouse liver has little impact on regulation of canonical seed-matched mRNAs and only a limited number of genes enriched in stress response pathways. These surprisingly weak and selective regulatory effects on known and predicted target mRNAs contrast with those of other abundant liver miRNAs such as miR-122 and let-7. Moreover, miR-21 shows greatly reduced binding to polysome-associated target mRNAs compared to miR-122 and let-7. Bioinformatic analysis suggests that reduced thermodynamic stability of seed pairing and target binding may contribute to this deficiency of miR-21. Significantly, these trends are reversed in human cervical carcinoma (HeLa) cells, where miRNAs including miR-21 show enhanced target binding within polysomes and where miR-21 triggers strong degradative activity toward target mRNAs. Taken together, our results suggest that, under normal cellular conditions in liver, miR-21 activity is maintained below a threshold required for binding and silencing most of its targets. Consequently, enhanced association with polysome-associated mRNA is likely to explain in part the gain of miR-21 function often found in diseased or stressed cells.

Collaboration


Dive into the B. Nelson Chau's collaboration.

Top Co-Authors

Avatar

Sofia Annis

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrew Hale

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Yu Lu

Harvard University

View shared research outputs
Top Co-Authors

Avatar

Kathleen J. Haley

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Brian B. Graham

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rahul Kumar

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Rajan Saggar

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara O. Vargas

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge