B. Neyenhuis
National Institute of Standards and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. Neyenhuis.
Science | 2008
Kang-Kuen Ni; S. Ospelkaus; M. H. G. de Miranda; Avi Pe'er; B. Neyenhuis; J. J. Zirbel; Svetlana Kotochigova; Paul S. Julienne; D. S. Jin; J. Ye
A quantum gas of ultracold polar molecules, with long-range and anisotropic interactions, not only would enable explorations of a large class of many-body physics phenomena but also could be used for quantum information processing. We report on the creation of an ultracold dense gas of potassium-rubidium (40K87Rb) polar molecules. Using a single step of STIRAP (stimulated Raman adiabatic passage) with two-frequency laser irradiation, we coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential. The polar molecular gas has a peak density of 1012 per cubic centimeter and an expansion-determined translational temperature of 350 nanokelvin. The polar molecules have a permanent electric dipole moment, which we measure with Stark spectroscopy to be 0.052(2) Debye (1 Debye = 3.336 × 10–30 coulomb-meters) for the triplet rovibrational ground state and 0.566(17) Debye for the singlet rovibrational ground state.
Nature Physics | 2016
Jacob Smith; Aaron M. Lee; Philip Richerme; B. Neyenhuis; Paul Hess; Philipp Hauke; Markus Heyl; David A. Huse; C. Monroe
Interacting quantum systems are expected to thermalize, but in some situations in the presence of disorder they can exist in localized states instead. This many-body localization is studied experimentally in a small system with programmable disorder. When a system thermalizes it loses all memory of its initial conditions. Even within a closed quantum system, subsystems usually thermalize using the rest of the system as a heat bath. Exceptions to quantum thermalization have been observed, but typically require inherent symmetries1,2 or noninteracting particles in the presence of static disorder3,4,5,6. However, for strong interactions and high excitation energy there are cases, known as many-body localization (MBL), where disordered quantum systems can fail to thermalize7,8,9,10. We experimentally generate MBL states by applying an Ising Hamiltonian with long-range interactions and programmable random disorder to ten spins initialized far from equilibrium. Using experimental and numerical methods we observe the essential signatures of MBL: initial-state memory retention, Poissonian distributed energy level spacings, and evidence of long-time entanglement growth. Our platform can be scaled to more spins, where a detailed modelling of MBL becomes impossible.
Physical Review Letters | 2012
Amodsen Chotia; B. Neyenhuis; Steven Moses; Bo Yan; Jacob Covey; Michael Foss-Feig; Ana Maria Rey; D. S. Jin; J. Ye
We have realized long-lived ground-state polar molecules in a 3D optical lattice, with a lifetime of up to 25 s, which is limited only by off-resonant scattering of the trapping light. Starting from a 2D optical lattice, we observe that the lifetime increases dramatically as a small lattice potential is added along the tube-shaped lattice traps. The 3D optical lattice also dramatically increases the lifetime for weakly bound Feshbach molecules. For a pure gas of Feshbach molecules, we observe a lifetime of greater than 20 s in a 3D optical lattice; this represents a 100-fold improvement over previous results. This lifetime is also limited by off-resonant scattering, the rate of which is related to the size of the Feshbach molecule. Individually trapped Feshbach molecules in the 3D lattice can be converted to pairs of K and Rb atoms and back with nearly 100% efficiency.
Nature Physics | 2008
S. Ospelkaus; A. Pe’er; Kang-Kuen Ni; J. J. Zirbel; B. Neyenhuis; Svetlana Kotochigova; Paul S. Julienne; J. Ye; D. S. Jin
S. Ospelkaus, A. Pe’er, K.-K. Ni, J. J. Zirbel, B. Neyenhuis, S. Kotochigova, P. S. Julienne, J. Ye, and D. S. Jin JILA, National Institute of Standards and Technology and University of Colorado, Department of Physics, University of Colorado, Boulder, CO 80309-0440, USA Physics Department, Temple University, Philadelphia, PA 19122-6082, USA Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899-8423, USA
Physical Review Letters | 2010
S. Ospelkaus; Kang-Kuen Ni; Goulven Quéméner; B. Neyenhuis; Dajun Wang; M. H. G. de Miranda; John L. Bohn; J. Ye; D. S. Jin
We report the preparation of a rovibronic ground-state molecular quantum gas in a single hyperfine state and, in particular, the absolute lowest quantum state. This addresses the last internal degree of freedom remaining after the recent production of a near quantum degenerate gas of molecules in their rovibronic ground state, and provides a crucial step towards full control over molecular quantum gases. We demonstrate a scheme that is general for bialkali polar molecules and allows the preparation of molecules in a single hyperfine state or in an arbitrary coherent superposition of hyperfine states. The scheme relies on electric-dipole, two-photon microwave transitions through rotationally excited states and makes use of electric nuclear quadrupole interactions to transfer molecular population between different hyperfine states.
Physical Review Letters | 2013
Jonathan Mizrahi; Crystal Senko; B. Neyenhuis; K. G. Johnson; Wesley C. Campbell; Conover Cw; C. Monroe
We report entanglement of a single atoms hyperfine spin state with its motional state in a time scale of less than 3 ns. We engineer a short train of intense laser pulses to impart a spin-dependent momentum transfer of ± 2 ħk. Using pairs of momentum kicks, we create an atomic interferometer and demonstrate collapse and revival of spin coherence as the motional wave packet is split and recombined. The revival after a pair of kicks occurs only when the second kick is delayed by an integer multiple of the harmonic trap period, a signature of entanglement and disentanglement of the spin with the motion. Such quantum control opens a new regime of ultrafast entanglement in atomic qubits.
Science Advances | 2017
B. Neyenhuis; Jiehang Zhang; Paul Hess; Jacob Smith; A. Lee; Phil Richerme; Zhe-Xuan Gong; Alexey V. Gorshkov; C. Monroe
Many-body interactions could lead to quantum thermalization, but long-range interactions provide an alternative. Although statistical mechanics describes thermal equilibrium states, these states may or may not emerge dynamically for a subsystem of an isolated quantum many-body system. For instance, quantum systems that are near-integrable usually fail to thermalize in an experimentally realistic time scale, and instead relax to quasi-stationary prethermal states that can be described by statistical mechanics, when approximately conserved quantities are included in a generalized Gibbs ensemble (GGE). We experimentally study the relaxation dynamics of a chain of up to 22 spins evolving under a long-range transverse-field Ising Hamiltonian following a sudden quench. For sufficiently long-range interactions, the system relaxes to a new type of prethermal state that retains a strong memory of the initial conditions. However, the prethermal state in this case cannot be described by a standard GGE; it rather arises from an emergent double-well potential felt by the spin excitations. This result shows that prethermalization occurs in a broader context than previously thought, and reveals new challenges for a generic understanding of the thermalization of quantum systems, particularly in the presence of long-range interactions.
Philosophical Transactions of the Royal Society A | 2017
Paul Hess; Patrick Becker; Harvey Kaplan; A. Kyprianidis; A. Lee; B. Neyenhuis; G. Pagano; Philip Richerme; C. Senko; Jacob Smith; Wen Lin Tan; Jiehang Zhang; C. Monroe
Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state. This article is part of the themed issue ‘Breakdown of ergodicity in quantum systems: from solids to synthetic matter’.
Physical Review A | 2016
A. Lee; Jacob Smith; Philip Richerme; B. Neyenhuis; Paul Hess; Jiehang Zhang; C. Monroe
In quantum information science, the external control of qubits must be balanced with the extreme isolation of the qubits from the environment. Atomic qubit systems typically mitigate this balance through the use of gated laser fields that can create superpositions and entanglement between qubits. Here we propose the use of high-order optical Stark shifts from optical fields to manipulate the splitting of atomic qubits that are insensitive to other types of fields. We demonstrate a fourth-order AC Stark shift in a trapped atomic ion system that does not require extra laser power beyond that needed for other control fields. We individually address a chain of tightly-spaced trapped ions and show how these controlled shifts can produce an arbitrary product state of ten ions as well as generate site-specific magnetic field terms in a simulated spin Hamiltonian.
Nature Photonics | 2016
J. D. Wong-Campos; K. G. Johnson; B. Neyenhuis; Jonathan Mizrahi; C. Monroe
Optical imaging systems are used extensively in the life and physical sciences because of their ability to non-invasively capture details on the microscopic and nanoscopic scales. Such systems are often limited by source or detector noise, image distortions and human operator misjudgement. Here, we report a general, quantitative method to analyse and correct these errors. We use this method to identify and correct optical aberrations in an imaging system for single atoms and realize an atomic position sensitivity of ∼0.5 nm Hz−1/2 with a minimum uncertainty of 1.7 nm, allowing the direct imaging of atomic motion. This is the highest position sensitivity ever measured for an isolated atom and opens up the possibility of performing out-of-focus three-dimensional particle tracking, imaging of atoms in three-dimensional optical lattices or sensing forces at the yoctonewton (10−24 N) scale. The position of a single Yb atomic ion is determined with a minimum uncertainty of 1.7 nm for 0.2 s integration time — the highest position sensitivity reported to date for an isolated atom.