Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. O. Fragomeni is active.

Publication


Featured researches published by B. O. Fragomeni.


Journal of Animal Science | 2015

Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus1

D. A. L. Lourenco; S. Tsuruta; B. O. Fragomeni; Y. Masuda; I. Aguilar; A. Legarra; J. K. Bertrand; T. S. Amen; L. Wang; D. W. Moser; I. Misztal

Predictive ability of genomic EBV when using single-step genomic BLUP (ssGBLUP) in Angus cattle was investigated. Over 6 million records were available on birth weight (BiW) and weaning weight (WW), almost 3.4 million on postweaning gain (PWG), and over 1.3 million on calving ease (CE). Genomic information was available on, at most, 51,883 animals, which included high and low EBV accuracy animals. Traditional EBV was computed by BLUP and genomic EBV by ssGBLUP and indirect prediction based on SNP effects was derived from ssGBLUP; SNP effects were calculated based on the following reference populations: ref_2k (contains top bulls and top cows that had an EBV accuracy for BiW ≥0.85), ref_8k (contains all parents that were genotyped), and ref_33k (contains all genotyped animals born up to 2012). Indirect prediction was obtained as direct genomic value (DGV) or as an index of DGV and parent average (PA). Additionally, runs with ssGBLUP used the inverse of the genomic relationship matrix calculated by an algorithm for proven and young animals (APY) that uses recursions on a small subset of reference animals. An extra reference subset included 3,872 genotyped parents of genotyped animals (ref_4k). Cross-validation was used to assess predictive ability on a validation population of 18,721 animals born in 2013. Computations for growth traits used multiple-trait linear model and, for CE, a bivariate CE-BiW threshold-linear model. With BLUP, predictivities were 0.29, 0.34, 0.23, and 0.12 for BiW, WW, PWG, and CE, respectively. With ssGBLUP and ref_2k, predictivities were 0.34, 0.35, 0.27, and 0.13 for BiW, WW, PWG, and CE, respectively, and with ssGBLUP and ref_33k, predictivities were 0.39, 0.38, 0.29, and 0.13 for BiW, WW, PWG, and CE, respectively. Low predictivity for CE was due to low incidence rate of difficult calving. Indirect predictions with ref_33k were as accurate as with full ssGBLUP. Using the APY and recursions on ref_4k gave 88% gains of full ssGBLUP and using the APY and recursions on ref_8k gave 97% gains of full ssGBLUP. Genomic evaluation in beef cattle with ssGBLUP is feasible while keeping the models (maternal, multiple trait, and threshold) already used in regular BLUP. Gains in predictivity are dependent on the composition of the reference population. Indirect predictions via SNP effects derived from ssGBLUP allow for accurate genomic predictions on young animals, with no advantage of including PA in the index if the reference population is large. With the APY conditioning on about 10,000 reference animals, ssGBLUP is potentially applicable to a large number of genotyped animals without compromising predictive ability.


Journal of Dairy Science | 2016

Implementation of genomic recursions in single-step genomic best linear unbiased predictor for US Holsteins with a large number of genotyped animals.

Y. Masuda; I. Misztal; S. Tsuruta; A. Legarra; I. Aguilar; D. A. L. Lourenco; B. O. Fragomeni; T.J. Lawlor

The objectives of this study were to develop and evaluate an efficient implementation in the computation of the inverse of genomic relationship matrix with the recursion algorithm, called the algorithm for proven and young (APY), in single-step genomic BLUP. We validated genomic predictions for young bulls with more than 500,000 genotyped animals in final score for US Holsteins. Phenotypic data included 11,626,576 final scores on 7,093,380 US Holstein cows, and genotypes were available for 569,404 animals. Daughter deviations for young bulls with no classified daughters in 2009, but at least 30 classified daughters in 2014 were computed using all the phenotypic data. Genomic predictions for the same bulls were calculated with single-step genomic BLUP using phenotypes up to 2009. We calculated the inverse of the genomic relationship matrix GAPY(-1) based on a direct inversion of genomic relationship matrix on a small subset of genotyped animals (core animals) and extended that information to noncore animals by recursion. We tested several sets of core animals including 9,406 bulls with at least 1 classified daughter, 9,406 bulls and 1,052 classified dams of bulls, 9,406 bulls and 7,422 classified cows, and random samples of 5,000 to 30,000 animals. Validation reliability was assessed by the coefficient of determination from regression of daughter deviation on genomic predictions for the predicted young bulls. The reliabilities were 0.39 with 5,000 randomly chosen core animals, 0.45 with the 9,406 bulls, and 7,422 cows as core animals, and 0.44 with the remaining sets. With phenotypes truncated in 2009 and the preconditioned conjugate gradient to solve mixed model equations, the number of rounds to convergence for core animals defined by bulls was 1,343; defined by bulls and cows, 2,066; and defined by 10,000 random animals, at most 1,629. With complete phenotype data, the number of rounds decreased to 858, 1,299, and at most 1,092, respectively. Setting up GAPY(-1) for 569,404 genotyped animals with 10,000 core animals took 1.3h and 57 GB of memory. The validation reliability with APY reaches a plateau when the number of core animals is at least 10,000. Predictions with APY have little differences in reliability among definitions of core animals. Single-step genomic BLUP with APY is applicable to millions of genotyped animals.


Frontiers in Genetics | 2016

Evaluation of Genome-Enabled Selection for Bacterial Cold Water Disease Resistance Using Progeny Performance Data in Rainbow Trout: Insights on Genotyping Methods and Genomic Prediction Models

Roger L. Vallejo; Timothy D. Leeds; B. O. Fragomeni; Guangtu Gao; Alvaro G. Hernandez; I. Misztal; Timothy J. Welch; Gregory D. Wiens; Yniv Palti

Bacterial cold water disease (BCWD) causes significant economic losses in salmonid aquaculture, and traditional family-based breeding programs aimed at improving BCWD resistance have been limited to exploiting only between-family variation. We used genomic selection (GS) models to predict genomic breeding values (GEBVs) for BCWD resistance in 10 families from the first generation of the NCCCWA BCWD resistance breeding line, compared the predictive ability (PA) of GEBVs to pedigree-based estimated breeding values (EBVs), and compared the impact of two SNP genotyping methods on the accuracy of GEBV predictions. The BCWD phenotypes survival days (DAYS) and survival status (STATUS) had been recorded in training fish (n = 583) subjected to experimental BCWD challenge. Training fish, and their full sibs without phenotypic data that were used as parents of the subsequent generation, were genotyped using two methods: restriction-site associated DNA (RAD) sequencing and the Rainbow Trout Axiom® 57 K SNP array (Chip). Animal-specific GEBVs were estimated using four GS models: BayesB, BayesC, single-step GBLUP (ssGBLUP), and weighted ssGBLUP (wssGBLUP). Family-specific EBVs were estimated using pedigree and phenotype data in the training fish only. The PA of EBVs and GEBVs was assessed by correlating mean progeny phenotype (MPP) with mid-parent EBV (family-specific) or GEBV (animal-specific). The best GEBV predictions were similar to EBV with PA values of 0.49 and 0.46 vs. 0.50 and 0.41 for DAYS and STATUS, respectively. Among the GEBV prediction methods, ssGBLUP consistently had the highest PA. The RAD genotyping platform had GEBVs with similar PA to those of GEBVs from the Chip platform. The PA of ssGBLUP and wssGBLUP methods was higher with the Chip, but for BayesB and BayesC methods it was higher with the RAD platform. The overall GEBV accuracy in this study was low to moderate, likely due to the small training sample used. This study explored the potential of GS for improving resistance to BCWD in rainbow trout using, for the first time, progeny testing data to assess the accuracy of GEBVs, and it provides the basis for further investigation on the implementation of GS in commercial rainbow trout populations.


Genetics Selection Evolution | 2015

Accuracy of estimated breeding values with genomic information on males, females, or both: an example on broiler chicken

D. A. L. Lourenco; B. O. Fragomeni; S. Tsuruta; I. Aguilar; Birgit Zumbach; Rachel Hawken; A. Legarra; I. Misztal

BackgroundAs more and more genotypes become available, accuracy of genomic evaluations can potentially increase. However, the impact of genotype data on accuracy depends on the structure of the genotyped cohort. For populations such as dairy cattle, the greatest benefit has come from genotyping sires with high accuracy, whereas the benefit due to adding genotypes from cows was smaller. In broiler chicken breeding programs, males have less progeny than dairy bulls, females have more progeny than dairy cows, and most production traits are recorded for both sexes. Consequently, genotyping both sexes in broiler chickens may be more advantageous than in dairy cattle.MethodsWe studied the contribution of genotypes from males and females using a real dataset with genotypes on 15 723 broiler chickens. Genomic evaluations used three training sets that included only males (4648), only females (8100), and both sexes (12 748). Realized accuracies of genomic estimated breeding values (GEBV) were used to evaluate the benefit of including genotypes for different training populations on genomic predictions of young genotyped chickens.ResultsUsing genotypes on males, the average increase in accuracy of GEBV over pedigree-based EBV for males and females was 12 and 1 percentage points, respectively. Using female genotypes, this increase was 1 and 18 percentage points, respectively. Using genotypes of both sexes increased accuracies by 19 points for males and 20 points for females. For two traits with similar heritabilities and amounts of information, realized accuracies from cross-validation were lower for the trait that was under strong selection.ConclusionsOverall, genotyping males and females improves predictions of all young genotyped chickens, regardless of sex. Therefore, when males and females both contribute to genetic progress of the population, genotyping both sexes may be the best option.


Frontiers in Genetics | 2014

Changes in variance explained by top SNP windows over generations for three traits in broiler chicken.

B. O. Fragomeni; I. Misztal; D. A. L. Lourenco; I. Aguilar; Ronald Okimoto; William M. Muir

The purpose of this study was to determine if the set of genomic regions inferred as accounting for the majority of genetic variation in quantitative traits remain stable over multiple generations of selection. The data set contained phenotypes for five generations of broiler chicken for body weight, breast meat, and leg score. The population consisted of 294,632 animals over five generations and also included genotypes of 41,036 single nucleotide polymorphism (SNP) for 4,866 animals, after quality control. The SNP effects were calculated by a GWAS type analysis using single step genomic BLUP approach for generations 1–3, 2–4, 3–5, and 1–5. Variances were calculated for windows of 20 SNP. The top ten windows for each trait that explained the largest fraction of the genetic variance across generations were examined. Across generations, the top 10 windows explained more than 0.5% but less than 1% of the total variance. Also, the pattern of the windows was not consistent across generations. The windows that explained the greatest variance changed greatly among the combinations of generations, with a few exceptions. In many cases, a window identified as top for one combination, explained less than 0.1% for the other combinations. We conclude that identification of top SNP windows for a population may have little predictive power for genetic selection in the following generations for the traits here evaluated.


Journal of Animal Science | 2016

Accuracies of genomic prediction of feed efficiency traits using different prediction and validation methods in an experimental Nelore cattle population1

Rafael Medeiros de Oliveira Silva; B. O. Fragomeni; D. A. L. Lourenco; Ana Fabrícia Braga Magalhães; Natalia Irano; Roberto Carvalheiro; R. C. Canesin; Maria Eugênia Zerlotti Mercadante; Arione Augusti Boligon; Fernando Baldi; I. Misztal; Lucia Galvão de Albuquerque

Animal feeding is the most important economic component of beef production systems. Selection for feed efficiency has not been effective mainly due to difficult and high costs to obtain the phenotypes. The application of genomic selection using SNP can decrease the cost of animal evaluation as well as the generation interval. The objective of this study was to compare methods for genomic evaluation of feed efficiency traits using different cross-validation layouts in an experimental beef cattle population genotyped for a high-density SNP panel (BovineHD BeadChip assay 700k, Illumina Inc., San Diego, CA). After quality control, a total of 437,197 SNP genotypes were available for 761 Nelore animals from the Institute of Animal Science, Sertãozinho, São Paulo, Brazil. The studied traits were residual feed intake, feed conversion ratio, ADG, and DMI. Methods of analysis were traditional BLUP, single-step genomic BLUP (ssGBLUP), genomic BLUP (GBLUP), and a Bayesian regression method (BayesCπ). Direct genomic values (DGV) from the last 2 methods were compared directly or in an index that combines DGV with parent average. Three cross-validation approaches were used to validate the models: 1) YOUNG, in which the partition into training and testing sets was based on year of birth and testing animals were born after 2010; 2) UNREL, in which the data set was split into 3 less related subsets and the validation was done in each subset a time; and 3) RANDOM, in which the data set was randomly divided into 4 subsets (considering the contemporary groups) and the validation was done in each subset at a time. On average, the RANDOM design provided the most accurate predictions. Average accuracies ranged from 0.10 to 0.58 using BLUP, from 0.09 to 0.48 using GBLUP, from 0.06 to 0.49 using BayesCπ, and from 0.22 to 0.49 using ssGBLUP. The most accurate and consistent predictions were obtained using ssGBLUP for all analyzed traits. The ssGBLUP seems to be more suitable to obtain genomic predictions for feed efficiency traits on an experimental population of genotyped animals.


Journal of Animal Science | 2016

Crossbreed evaluations in single-step genomic best linear unbiased predictor using adjusted realized relationship matrices1

D. A. L. Lourenco; S. Tsuruta; B. O. Fragomeni; C. Y. Chen; W. O. Herring; I. Misztal

Combining purebreed and crossbreed information is beneficial for genetic evaluation of some livestock species. Genetic evaluations can use relationships based on genomic information, relying on allele frequencies that are breed specific. Single-step genomic BLUP (ssGBLUP) does not account for different allele frequencies, which could limit the genetic gain in crossbreed evaluations. In this study, we tested the performance of different breed-specific genomic relationship matrices () in ssGBLUP for crossbreed evaluations; we also tested the importance of genotyping crossbred animals. Genotypes were available for purebreeds (AA and BB) and crossbreeds (F) in simulated and real pig populations. The number of genotyped animals was, on average, 4,315 for the simulated population and 15,798 for the real population. Cross-validation was performed on 1,200 and 3,117 F animals in the simulated and real populations, respectively. Simulated scenarios were under no artificial selection, mass selection, or BLUP selection. Two genomic relationship matrices were constructed based on breed-specific allele frequencies: 1) , a genomic relationship matrix centered by breed-specific allele frequencies, and 2) , a genomic relationship matrix centered and scaled by breed-specific allele frequencies. All (the across-breed genomic relationship matrix), , and were also tuned to account for selective genotyping. Using breed-specific allele frequencies reduced the number of negative relationships between 2 purebreeds, pulling the average closer to 0, as in the pedigree-based relationship matrix. For simulated populations that included mass selection, genomic EBV (GEBV) in F, when using and , were, on average, 10% more accurate than ; however, after tuning to account for selective genotyping, provided the same accuracy as for breed-specific genomic relationship matrices. For the real population, accuracies for litter size in F were 0.62 for , , and , and tuning had no impact on accuracy, except for , which was 1 percentage point less accurate. Accuracy of GEBV for number of stillborns in F1 was 0.5 for all tested genomic relationship matrices with no changes after tuning. We observed that genotyping F increased accuracies of GEBV for the same animals by up to 39% compared with having genotypes for only AA and BB. In crossbreed evaluations, accounting for breed-specific allele frequencies promoted changes in G that were not influential enough to improve accuracy of GEBV. Therefore, the best performance of ssGBLUP for crossbreed evaluations requires genotypes for pure- and crossbreeds and no breed-specific adjustments in the realized relationship matrix.


PLOS ONE | 2017

Genome-Wide Association Study for Carcass Traits in an Experimental Nelore Cattle Population

Rafael Medeiros de Oliveira Silva; N. B. Stafuzza; B. O. Fragomeni; Gregório Miguel Ferreira de Camargo; Thaís Matos Ceacero; Joslaine Noely dos Santos Gonçalves Cyrillo; Fernando Baldi; Arione Augusti Boligon; Maria Eugênia Zerlotti Mercadante; D. A. L. Lourenco; I. Misztal; Lucia Galvão de Albuquerque

The purpose of this study was to identify genomic regions associated with carcass traits in an experimental Nelore cattle population. The studied data set contained 2,306 ultrasound records for longissimus muscle area (LMA), 1,832 for backfat thickness (BF), and 1,830 for rump fat thickness (RF). A high-density SNP panel (BovineHD BeadChip assay 700k, Illumina Inc., San Diego, CA) was used for genotyping. After genomic data quality control, 437,197 SNPs from 761 animals were available, of which 721 had phenotypes for LMA, 669 for BF, and 718 for RF. The SNP solutions were estimated using a single-step genomic BLUP approach (ssGWAS), which calculated the variance for windows of 50 consecutive SNPs and the regions that accounted for more than 0.5% of the additive genetic variance were used to search for candidate genes. The results indicated that 12, 18, and 15 different windows were associated to LMA, BF, and RF, respectively. Confirming the polygenic nature of the studied traits, 43, 65, and 53 genes were found in those associated windows, respectively for LMA, BF, and RF. Among the candidate genes, some of them, which already had their functions associated with the expression of energy metabolism, were found associated with fat deposition in this study. In addition, ALKBH3 and HSD17B12 genes, which are related in fibroblast death and metabolism of steroids, were found associated with LMA. The results presented here should help to better understand the genetic and physiologic mechanism regulating the muscle tissue deposition and subcutaneous fat cover expression of Zebu animals. The identification of candidate genes should contribute for Zebu breeding programs in order to consider carcass traits as selection criteria in their genetic evaluation.


Frontiers in Genetics | 2017

Similar Genetic Architecture with Shared and Unique Quantitative Trait Loci for Bacterial Cold Water Disease Resistance in Two Rainbow Trout Breeding Populations

Roger L. Vallejo; Sixin Liu; Guangtu Gao; B. O. Fragomeni; Alvaro G. Hernandez; Timothy D. Leeds; James E. Parsons; Kyle E. Martin; Jason P. Evenhuis; Timothy J. Welch; Gregory D. Wiens; Yniv Palti

Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect quantitative trait loci (QTL) for BCWD resistance in rainbow trout (Oncorhynchus mykiss). However, the recent availability of a 57 K SNP array and a reference genome assembly have enabled us to conduct genome-wide association studies (GWAS) that overcome several experimental limitations from our previous work. In the current study, we conducted GWAS for BCWD resistance in two rainbow trout breeding populations using two genotyping platforms, the 57 K Affymetrix SNP array and restriction-associated DNA (RAD) sequencing. Overall, we identified 14 moderate-large effect QTL that explained up to 60.8% of the genetic variance in one of the two populations and 27.7% in the other. Four of these QTL were found in both populations explaining a substantial proportion of the variance, although major differences were also detected between the two populations. Our results confirm that BCWD resistance is controlled by the oligogenic inheritance of few moderate-large effect loci and a large-unknown number of loci each having a small effect on BCWD resistance. We detected differences in QTL number and genome location between two GWAS models (weighted single-step GBLUP and Bayes B), which highlights the utility of using different models to uncover QTL. The RAD-SNPs detected a greater number of QTL than the 57 K SNP array in one population, suggesting that the RAD-SNPs may uncover polymorphisms that are more unique and informative for the specific population in which they were discovered.


Journal of Animal Science | 2015

Genotype × environment interaction in individual performance and progeny tests in beef cattle

F. S. S. Raidan; Tiago Luciano Passafaro; B. O. Fragomeni; L. A. Josahkian; Idalmo Garcia Pereira; Fábio Luiz Buranelo Toral

The study reported here evaluated genotype × environment interaction in individual performance and progeny tests in beef cattle. Genetic parameters for final weight (FW), ADG, and scrotal circumference (SC) of 33,013 Nellore young bulls tested on pasture or in feedlots were analyzed. The posterior means (and highest posterior density interval with 90% of samples [HPD90]) of heritability for traits measured on pasture-raised and feedlot-raised animals were 0.44 (HPD90 = 0.40 to 0.48) and 0.50 (HPD90 = 0.43 to 0.56) for FW, 0.26 (HPD90 = 0.23 to 0.29) and 0.26 (HPD90 = 0.20 to 0.32) for ADG, and 0.53 (HPD90 = 0.48 to 0.59) and 0.65 (HPD90 = 0.55 to 0.74) for SC, respectively. The posterior means (and HPD90) of genetic correlations for FW, ADG, and SC on pasture and in feedlots were 0.75 (HPD90 = 0.66 to 0.87), 0.49 (HPD90 = 0.31 to 0.66), and 0.89 (HPD90 = 0.83 to 0.97), respectively. When the selection intensity was kept the same for both the environments, the greatest direct responses for FW and ADG were exhibited by the animals reared and selected in feedlots. The correlated responses relative to production on pasture and based on selection in feedlots were similar to the direct responses, whereas the correlated responses for production in feedlots and based on selection on pasture were lower than the direct responses. When the selection intensity on pasture was higher than the selection intensity in feedlots, the responses to direct selection were similar for both the environments and correlated responses obtained in feedlots by selection on pasture were similar to the direct responses in feedlots. Analyses of few or poor indicators of genotype × environment interaction result in incorrect interpretations of its existence and implications. The present work demonstrated that traits with lower heritability are more susceptible to genotype × environment interaction and that selection intensity plays an important role in the study of genotype × environment interaction in beef cattle.

Collaboration


Dive into the B. O. Fragomeni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Y. Masuda

University of Georgia

View shared research outputs
Top Co-Authors

Avatar

A. Legarra

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory D. Wiens

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Guangtu Gao

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Roger L. Vallejo

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge