Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Pandurangan is active.

Publication


Featured researches published by B. Pandurangan.


Shock and Vibration | 2006

The effect of degree of saturation of sand on detonation phenomena associated with shallow-buried and ground-laid mines

M. Grujicic; B. Pandurangan; B. A. Cheeseman

A new materials model for sand has been developed in order to include the effects of the degree of saturation and the deformation rate on the constitutive response of this material. The model is an extension of the original compaction materials model for sand in which these effects were neglected. The new materials model for sand is next used, within a non-linear-dynamics transient computational analysis, to study various phenomena associated with the explosion of shallow-buried and ground-laid mines. The computational results are compared with the corresponding experimental results obtained through the use of an instrumented horizontal mine-impulse pendulum, pressure transducers buried in sand and a post-detonation metrological study of the sand craters. The results obtained suggest that the modified compaction model for sand captures the essential features of the dynamic behavior of sand and accounts reasonably well for a variety of the experimental findings related to the detonation of shallow-buried or ground-laid mines.


Multidiscipline Modeling in Materials and Structures | 2007

Ballistic Performance of Alumina/S‐2 Glass‐reinforced Polymer‐matrix Composite Hybrid Lightweight Armor Against Armor Piercing (ap) and Non‐AP Projectiles

M. Grujicic; B. Pandurangan; U. Zecevic; K. L. Koudela; B. A. Cheeseman

The ability of light‐weight all fiber‐reinforced polymer‐matrix composite armor and hybrid composite‐based armor hard‐faced with ceramic tiles to withstand the impact of a non‐Armor‐ Piercing (non‐AP) and AP projectiles is investigated using a transient non‐linear dynamics computational analysis. The results obtained confirm experimental findings that the all‐composite armor, while being able to successfully defeat non‐AP threats, provides very little protection against AP projectiles. In the case of the hybrid armor, it is found that, at a fixed overall areal density of the armor, there is an optimal ratio of the ceramic‐to‐composite areal densities which is associated with a maximum ballistic armor performance against AP threats. The results obtained are rationalized using an analysis based on the shock/blast wave reflection and transmission behavior at the hard‐face/air, hard‐face/backing and backing/air interfaces, projectiles’ wear and erosion and the intrinsic properties of the constituent materials of the armor and the projectiles.


Journal of Materials Engineering and Performance | 2012

Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

M. Grujicic; G. Arakere; B. Pandurangan; J. M. Ochterbeck; C-F. Yen; B. A. Cheeseman; Anthony P. Reynolds; Michael A. Sutton

Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.


Journal of Materials Engineering and Performance | 2012

Potential Improvements in Shock-Mitigation Efficacy of a Polyurea-Augmented Advanced Combat Helmet

A. Grujicic; Martine LaBerge; M. Grujicic; B. Pandurangan; James Runt; J. Tarter; G. Dillon

The design of the currently used Advanced Combat Helmet (ACH) has been optimized to attain maximum protection against ballistic impacts (fragments, shrapnel, etc.) and hard-surface collisions. However, the ability of the ACH to protect soldiers against blast loading appears not to be as effective. Polyurea, a micro-segregated elastomeric copolymer has shown superior shock-mitigation capabilities. In the present work, a combined Eulerian/Lagrangian transient non-linear dynamics computational fluid/solid interaction analysis is used to investigate potential shock-mitigation benefits which may result from different polyurea-based design augmentations of the ACH. Specific augmentations include replacement of the currently used suspension-pad material with polyurea and the introduction of a thin polyurea internal lining/external coating to the ACH shell. Effectiveness of different ACH designs was quantified by: (a) establishing the main forms of mild traumatic brain injury (mTBI); (b) identifying the key mechanical causes for these injuries; and (c) quantifying the extents of reductions in the magnitude of these mechanical causes. The results obtained show that while the ACH with a 2-mm-thick polyurea internal lining displays the best blast mitigation performance, it does not provide sufficient protection against mTBI.


Journal of Materials Engineering and Performance | 2011

Filament-Level Modeling of Aramid-Based High-Performance Structural Materials

M. Grujicic; W. C. Bell; P. S. Glomski; B. Pandurangan; C.-F. Yen; B. A. Cheeseman

Molecular statics and molecular dynamics are employed to study the effects of various microstructural and topological defects (e.g., chain ends, axial chain misalignment, inorganic solvent impurities, and sheet stacking faults) on the strength, ductility, and stiffness of p-phenylene terephthalamide (PPTA) fibers/filaments. These fibers can be considered as prototypes for advanced high strength/high-stiffness fibers like Kevlar®, Twaron®, New Star®, etc. While modeling these fibers, it was taken into account that they are essentially crystalline materials consisting of stacks of sheets, with each sheet containing an array of nearly parallel hydrogen-bonded molecules/chains. The inter-sheet bonding, on the other hand, was considered as mainly being of van der Waals or p-electron character. The effects of various deviations of the PPTA fiber structure from that of the perfectly crystalline structure (i.e., microstructural/topological defects) on the material’s mechanical properties are then considered. The results obtained show that while the presence of these defects decreases all the mechanical properties of PPTA fibers, specific properties display an increased level of sensitivity to the presence of certain defects. For example, longitudinal tensile properties are found to be most sensitive to the presence of chain ends, in-sheet transverse properties to the presence of chain misalignments, while cross-sheet transverse properties are found to be most affected by the presence of sheet stacking faults.


Journal of Materials Engineering and Performance | 2012

Process Modeling of Ti-6Al-4V Linear Friction Welding (LFW)

M. Grujicic; G. Arakere; B. Pandurangan; C.-F. Yen; B. A. Cheeseman

A fully coupled thermomechanical finite-element analysis of the linear friction welding (LFW) process is combined with the basic physical metallurgy of Ti-6Al-4V to predict microstructure and mechanical properties within the LFW joints (as a function of the LFW process parameters). A close examination of the experimental results reported in the open literature revealed that the weld region consists of a thermomechanically affected zone (TMAZ) and a heat-affected zone (HAZ) and that the material mechanical properties are somewhat more inferior in the HAZ. Taking this observation into account, a model for microstructure-evolution during LFW was developed and parameterized for the Ti-6Al-4V material residing in the HAZ. Specifically, this model addresses the problem of temporal evolution of the prior β-phase grain size (the dominant microstructural parameter in the HAZ) during the LFW process. This model is next combined with the well-established property versus microstructure correlations in Ti-6Al-4V to predict the overall structural performance of the LFW joint. The results obtained are found to be in reasonably good agreement with their experimental counterparts suggesting that the present computational approach may be used to guide the selection of the LFW process parameters to optimize the structural performance of the LFW joints.


Journal of Materials Engineering and Performance | 2012

Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses

M. Grujicic; B. Pandurangan; C.-F. Yen; B. A. Cheeseman

Johnson-Cook strength material model is frequently used in finite-element analyses of various manufacturing processes involving plastic deformation of metallic materials. The main attraction to this model arises from its mathematical simplicity and its ability to capture the first-order metal-working effects (e.g., those associated with the influence of plastic deformation, rate of deformation, and the attendant temperature). However, this model displays serious shortcomings when used in the engineering analyses of various hot-working processes (i.e., those utilizing temperatures higher than the material recrystallization temperature). These shortcomings are related to the fact that microstructural changes involving: (i) irreversible decrease in the dislocation density due to the operation of annealing/recrystallization processes; (ii) increase in grain-size due to high-temperature exposure; and (iii) dynamic-recrystallization-induced grain refinement are not accounted for by the model. In this study, an attempt is made to combine the basic physical-metallurgy principles with the associated kinetics relations to properly modify the Johnson-Cook material model, so that the model can be used in the analyses of metal hot-working and joining processes. The model is next used to help establish relationships between process parameters, material microstructure and properties in friction stir welding welds of AA5083 (a non-age-hardenable, solid-solution strengthened, strain-hardened/stabilized Al-Mg-Mn alloy).


Journal of Materials Engineering and Performance | 2012

Experimental Characterization and Material-Model Development for Microphase-Segregated Polyurea: An Overview

M. Grujicic; T. He; B. Pandurangan; F. R. Svingala; Gary S. Settles; Michael Hargather

Numerous experimental investigations reported in the open literature over the past decade have clearly demonstrated that the use of polyurea external coatings and/or inner layers can substantially enhance both the blast resistance (the ability to withstand shock loading) and the ballistic performance (the ability to defeat various high-velocity projectiles such as bullets, fragments, shrapnel, etc. without penetration, excessive deflection or spalling) of buildings, vehicles, combat-helmets, etc. It is also well established that the observed high-performance of polyurea is closely related to its highly complex submicron scale phase-segregated microstructure and the associated microscale phenomena and processes (e.g., viscous energy dissipation at the internal phase boundaries). As higher and higher demands are placed on blast/ballistic survivability of the foregoing structures, a need for the use of the appropriate transient nonlinear dynamics computational analyses and the corresponding design-optimization methods has become ever apparent. A critical aspect of the tools used in these analyses and methods is the availability of an appropriate physically based, high-fidelity material model for polyurea. There are presently several public domain and highly diverse material models for polyurea. In the present work, an attempt is made to critically assess these models as well as the experimental methods and results used in the process of their formulation. Since these models are developed for use in the high-rate loading regime, they are employed in the present work, to generate the appropriate shock-Hugoniot relations. These relations are subsequently compared with their experimental counterparts in order to assess the fidelity of these models.


Journal of Materials Engineering and Performance | 2012

Concept-Level Analysis and Design of Polyurea for Enhanced Blast-Mitigation Performance

M. Grujicic; B. d’Entremont; B. Pandurangan; James Runt; J. Tarter; G. Dillon

Polyurea is an elastomeric co-polymer in which the presence of strong hydrogen bonding between chains gives rise to the formation of a nano-composite like microstructure consisting of discrete hard-domains distributed randomly within a compliant/soft matrix. Several experimental investigations reported in the open literature have indicated that the application of polyurea external coatings and/or internal linings can substantially improve ballistic penetration resistance and blast survivability of buildings, vehicles and laboratory/field test-plates. Recently, it was proposed that transition of polyurea between its rubbery state and its glassy state under high deformation-rate loading conditions is the main mechanism responsible for the improved ballistic-impact resistance of polyurea-coated structures. As far as the shock-mitigation performance of polyurea is concerned, additional/alternative mechanisms such as shock-impedance mismatch, shock-wave dispersion, fracture-mode conversion, and strain delocalization have been suggested (without validation). In this study, an attempt is made to identify the phenomena and processes within polyurea which are most likely responsible for the observed superior shock-mitigation performance of this material. Towards that end, computational methods and tools are used to investigate shockwave generation, propagation, dispersion, and transmission/reflection within polyurea and the adjoining material layers as present in the case of a blast-loaded assembly consisting of a head covered with a polyurea-augmented helmet. The results obtained show that for effective shock mitigation, the operation of volumetric energy-dissipating/energy-storing processes is required. Candidate processes of this type are identified and presented.


Multidiscipline Modeling in Materials and Structures | 2012

A study of the blast‐induced brain white‐matter damage and the associated diffuse axonal injury

M. Grujicic; B. D'Entremont; B. Pandurangan; A. Grujicic; Martine LaBerge; James Runt; James Tarter; G. Dillon

Purpose – Blast‐induced traumatic brain injury (TBI) is a signature injury of the current military conflicts. Among the different types of TBI, diffuse axonal injury (DAI) plays an important role since it can lead to devastating effects in the inflicted military personnel. To better understand the potential causes associated with DAI, this paper aims to investigate a transient non‐linear dynamics finite element simulation of the response of the brain white matter to shock loading.Design/methodology/approach – Brain white matter is considered to be a heterogeneous material consisting of fiber‐like axons and a structure‐less extracellular matrix (ECM). The brain white matter microstructure in the investigated corpus callosum region of the brain is idealized using a regular hexagonal arrangement of aligned equal‐size axons. Deviatoric stress response of the axon and the ECM is modeled using a linear isotropic viscoelastic formulation while the hydrostatic stress response is modeled using a shock‐type equatio...

Collaboration


Dive into the B. Pandurangan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. He

Clemson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Dillon

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

James Runt

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge