Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Robert Ilic is active.

Publication


Featured researches published by B. Robert Ilic.


arXiv: Optics | 2017

Stably accessing octave-spanning microresonator frequency combs in the soliton regime

Qing Li; Travis C. Briles; Daron A. Westly; Tara E. Drake; Jordan R. Stone; B. Robert Ilic; Scott A. Diddams; Scott B. Papp; Kartik Srinivasan

Microresonator frequency combs can be an enabling technology for optical frequency synthesis and timekeeping in low size, weight, and power architectures. Such systems require comb operation in low-noise, phase-coherent states such as solitons, with broad spectral bandwidths (e.g., octave-spanning) for self-referencing to detect the carrier-envelope offset frequency. However, accessing such states is complicated by thermo-optic dispersion. For example, in the Si3N4 platform, precisely dispersion-engineered structures can support broadband operation, but microsecond thermal time constants often require fast pump power or frequency control to stabilize the solitons. In contrast, here we consider how broadband soliton states can be accessed with simple pump laser frequency tuning, at a rate much slower than the thermal dynamics. We demonstrate octave-spanning soliton frequency combs in Si3N4 microresonators, including the generation of a multi-soliton state with a pump power near 40 mW and a single-soliton state with a pump power near 120 mW. We also develop a simplified two-step analysis to explain how these states are accessed without fast control of the pump laser, and outline the required thermal properties for such operation. Our model agrees with experimental results as well as numerical simulations based on a Lugiato-Lefever equation that incorporates thermo-optic dispersion. Moreover, it also explains an experimental observation that a member of an adjacent mode family on the red-detuned side of the pump mode can mitigate the thermal requirements for accessing soliton states.


Nature | 2018

An optical-frequency synthesizer using integrated photonics.

Daryl T. Spencer; Tara E. Drake; Travis C. Briles; Jordan R. Stone; Laura C. Sinclair; Connor Fredrick; Qing Li; Daron A. Westly; B. Robert Ilic; Aaron Bluestone; Nicolas Volet; Tin Komljenovic; Lin Chang; Seung Hoon Lee; Dong Yoon Oh; Myoung-Gyun Suh; Ki Youl Yang; Martin H. P. Pfeiffer; Tobias J. Kippenberg; Erik J. Norberg; Luke Theogarajan; Kerry J. Vahala; Nathan R. Newbury; Kartik Srinivasan; John E. Bowers; Scott A. Diddams; Scott B. Papp

Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability much beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the 7.0x10^(−13) reference-clock instability for a 1 second acquisition, and constrain any synthesis error to 7.7x10^(−15) while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.Optical-frequency synthesizers, which generate frequency-stable light from a single microwave-frequency reference, are revolutionizing ultrafast science and metrology, but their size, power requirement and cost need to be reduced if they are to be more widely used. Integrated-photonics microchips can be used in high-coherence applications, such as data transmission1, highly optimized physical sensors2 and harnessing quantum states3, to lower cost and increase efficiency and portability. Here we describe a method for synthesizing the absolute frequency of a lightwave signal, using integrated photonics to create a phase-coherent microwave-to-optical link. We use a heterogeneously integrated III–V/silicon tunable laser, which is guided by nonlinear frequency combs fabricated on separate silicon chips and pumped by off-chip lasers. The laser frequency output of our optical-frequency synthesizer can be programmed by a microwave clock across 4 terahertz near 1,550 nanometres (the telecommunications C-band) with 1 hertz resolution. Our measurements verify that the output of the synthesizer is exceptionally stable across this region (synthesis error of 7.7 × 10−15 or below). Any application of an optical-frequency source could benefit from the high-precision optical synthesis presented here. Leveraging high-volume semiconductor processing built around advanced materials could allow such low-cost, low-power and compact integrated-photonics devices to be widely used.An optical-frequency synthesizer based on stabilized frequency combs has been developed utilizing chip-scale devices as key components, in a move towards using integrated photonics technology for ultrafast science and metrology.


Applied Physics Letters | 2016

Experimental dynamic trapping of electrostatically actuated bistable micro-beams

Lior Medina; Rivka Gilat; B. Robert Ilic; Slava Krylov

We demonstrate dynamic snap-through from a primary to a secondary statically inaccessible stable configuration in single crystal silicon, curved, doubly clamped micromechanical beam structures. Nanoscale motion of the fabricated bistable micromechanical devices was transduced using a high speed camera. Our experimental and theoretical results collectively show, that the transition between the two stable states was solely achieved by a tailored time dependent electrostatic actuation. Fast imaging of micromechanical motion allowed for direct visualization of dynamic trapping at the statically inaccessible state. These results further suggest that our direct dynamic actuation transcends prevalent limitations in controlling geometrically non-linear microstructures, and may have applications extending to multi-stable, topologically optimized micromechanical logic and non-volatile memory architectures.


Journal of Micromechanics and Microengineering | 2016

Displacement sensing based on resonant frequency monitoring of electrostatically actuated curved micro beams

Naftaly Krakover; B. Robert Ilic; Slava Krylov

The ability to control nonlinear interactions of suspended mechanical structures offers a unique opportunity to engineer rich dynamical behavior that extends the dynamic range and ultimate device sensitivity. We demonstrate a displacement sensing technique based on resonant frequency monitoring of curved, doubly clamped, bistable micromechanical beams interacting with a movable electrode. In this configuration, the electrode displacement influences the nonlinear electrostatic interactions, effective stiffness and frequency of the curved beam. Increased sensitivity is made possible by dynamically operating the beam near the snap-through bistability onset. Various in-plane device architectures were fabricated from single crystal silicon and measured under ambient conditions using laser Doppler vibrometry. In agreement with the reduced order Galerkin-based model predictions, our experimental results show a significant resonant frequency reduction near critical snap-through, followed by a frequency increase within the post-buckling configuration. Interactions with a stationary electrode yield a voltage sensitivity up to ≈ 560 Hz/V and results with a movable electrode allow motion sensitivity up to ≈ 1.5 Hz/nm. Our theoretical and experimental results collectively reveal the potential of displacement sensing using nonlinear interactions of geometrically curved beams near instabilities, with possible applications ranging from highly sensitive resonant inertial detectors to complex optomechanical platforms providing an interface between the classical and quantum domains.


Applied Physics Letters | 2012

Silicon nanowire atomic force microscopy probes for high aspect ratio geometries

Brian A. Bryce; B. Robert Ilic; M. C. Reuter; Sandip Tiwari

Using site controlled growth of single vapor-liquid-solid silicon nanowires high aspect ratio atomic force microscope probes are fabricated on a wafer scale. Nanowire probe aspect ratios as high as 90:1 are demonstrated. Probe performance and limitations are explored by imaging high aspect ratio etched silicon structures using atomic force microscopy. Silicon nanowire probes are an ideal platform for non-destructive topographic imaging of high aspect ratio features.


Applied Physics Letters | 2014

Collective dynamics and pattern switching in an array of parametrically excited micro cantilevers interacting through fringing electrostatic fields

Slava Krylov; Stella Lulinsky; B. Robert Ilic; Inbar Schneider

We report on an experimental observation of synchronization and abrupt transitions between standing wave patterns in arrays of micromechanical oscillators. The architecture of flexible cantilever arrays parametrically excited by and interacting through time-dependent fringing electrostatic fields allows tuning of an interaction potential and supports traveling waves. The arrays consisting of 500 μm long and 5 μm thick single crystal Si cantilevers were fabricated from silicon on insulator substrates. The out-of-plane resonant responses were visualized by time-averaged temporally aliased video imaging and measured by laser Doppler vibrometry. Our experimental and reduced order model results collectively demonstrate that under a slowly varying drive frequency the standing wave patterns remain unchanged in certain frequencies intervals, followed by an abrupt change in the pattern.


Journal of Vibration and Acoustics | 2018

Actuation of Higher Harmonics in Large Arrays of Micromechanical Cantilevers for Expanded Resonant Peak Separation

Nir Dick; Scott Joseph Grutzik; Christopher B. Wallin; B. Robert Ilic; Slava Krylov; Alan T. Zehnder

A large array of elastically coupled micro cantilevers of variable length is studied experimentally and numerically. Full-scale finite element modal analysis is implemented to determine the spectral behavior of the array and to extract a global coupling matrix. A compact reduced order model is used for numerical investigation of the arrays dynamic response. Our model results show that at a given excitation frequency within a propagation band, only a finite number of beams respond. Spectral characteristics of individual cantilevers, inertially excited by an external piezoelectric actuator, were measured in vacuum using laser interferometry. The theoretical and experimental results collectively show that the resonant peaks corresponding to individual beams are clearly separated when operating in vacuum at the 3rd harmonic. Distinct resonant peak separation, coupled with the spatially-confined modal response, make higher harmonic operation of tailored, variable-length cantilever arrays well suited for a variety of resonant based sensing applications.


Journal of Applied Physics | 2018

In Situ Observation of Carbon Nanotube Layer Growth on Microbolometers with Substrates at Ambient Temperature

Vojtěch Svatoš; Imrich Gablech; B. Robert Ilic; Jan Pekárek; Pavel Neužil

Carbon nanotubes (CNTs) have near unity infrared (IR) absorption efficiency, making them extremely attractive in IR imaging devices. Since CNT growth occurs at elevated temperatures, integration of CNTs with IR imaging devices is challenging and has not yet been achieved. Here we show a strategy for implementing CNTs as IR absorbers using differential heating of thermally-isolated microbolometer membranes in a C2H2 environment. During the process, CNTs were catalytically grown on the surface of a locally-heated membrane while the substrate was maintained at an ambient temperature. CNT growth was monitored in situ in real time using optical microscopy. During growth, we measured the intensity of light emission and the reflected light from the heated microbolometer. Our measurements of bolometer performance show that the CNT layer on the surface of the microbolometer membrane increases the IR response by a factor of (2.3 ± 0.1) (mean ± one standard deviation of the least-squares fit parameters). This work opens the door to integrating near unity IR absorption, CNT-based, IR absorbers with hybrid complementary metal-oxide-semiconductor focal plane array architectures.


Proceedings of SPIE | 2016

Exploring frustrated magnetism with artificial spin ice

Ian J. Gilbert; B. Robert Ilic

Nanomagnet arrays known as artificial spin ice provide insight into the microscopic details of frustrated magnetism because, unlike natural frustrated magnets, the individual moments can be experimentally resolved and the lattice geometry can be easily tuned. Most studies of artificial spin ice focus on two lattice geometries, the square and the kagome lattices, due to their direct correspondence to natural spin ice materials such as Dy2Ti2O7. In this work, we review experiments on these more unusual lattice geometries and introduce a new type of nanomagnet array, artificial spin glass. Artificial spin glass is a two-dimensional array of nanomagnets with random locations and orientations and is designed to elucidate the more complex frustration found in spin glass materials.


Light-Science & Applications | 2018

Subnanometer localization accuracy in widefield optical microscopy

Craig R. Copeland; Jon C. Geist; Craig D. McGray; Vladimir A. Aksyuk; J. Alexander Liddle; B. Robert Ilic; Samuel M. Stavis

The common assumption that precision is the limit of accuracy in localization microscopy and the typical absence of comprehensive calibration of optical microscopes lead to a widespread issue—overconfidence in measurement results with nanoscale statistical uncertainties that can be invalid due to microscale systematic errors. In this article, we report a comprehensive solution to this underappreciated problem. We develop arrays of subresolution apertures into the first reference materials that enable localization errors approaching the atomic scale across a submillimeter field. We present novel methods for calibrating our microscope system using aperture arrays and develop aberration corrections that reach the precision limit of our reference materials. We correct and register localization data from multiple colors and test different sources of light emission with equal accuracy, indicating the general applicability of our reference materials and calibration methods. In a first application of our new measurement capability, we introduce the concept of critical-dimension localization microscopy, facilitating tests of nanofabrication processes and quality control of aperture arrays. In a second application, we apply these stable reference materials to answer open questions about the apparent instability of fluorescent nanoparticles that commonly serve as fiducial markers. Our study establishes a foundation for subnanometer localization accuracy in widefield optical microscopy.Localization microscopy: approaching atomic accuracy across a wide fieldAn innovative approach to calibrating optical microscopes greatly improves the accuracy of position measurements of single molecules and nanoparticles emitting light. Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland, in Maryland, USA, have developed a reference material and calibration method that reduces errors in localization microscopy to within a few atomic diameters across a field of hundreds of micrometers. The method uses a nanofabricated array of apertures, or holes, to transmit light and form a standard image that enables correction of localization data. This approach eliminates systematic errors, which vary across the field, and improves the localization accuracy by up to a factor of 10,000. Their work advances the ability to perform quantitative measurements by localization microscopy in diverse disciplines such as cell biology, micromechanics, and nanotechnology.The common assumption that precision is the limit of accuracy in localization microscopy and the typical absence of comprehensive calibration of optical microscopes lead to a widespread issue - overconfidence in measurement results with nanoscale statistical uncertainties that can be invalid due to microscale systematic errors. In this article, we report a comprehensive solution to this underappreciated problem. We develop arrays of subresolution apertures into the first reference materials that enable localization errors approaching the atomic scale across a submillimeter field. We present novel methods to calibrate our microscope system using aperture arrays and develop aberration corrections that reach the precision limit of our reference materials. We correct and register localization data from multiple colors and test different sources of light emission with equal accuracy, indicating the general applicability of our reference materials and calibration methods. In a first application of our new measurement capability, we introduce the concept of critical dimension localization microscopy, facilitating tests of nanofabrication processes and quality control of aperture arrays. In a second application, we apply these stable reference materials to answer open questions about the apparent instability of fluorescent nanoparticles that commonly serve as fiducial markers. Our study establishes a foundation for subnanometer localization accuracy in widefield optical microscopy.

Collaboration


Dive into the B. Robert Ilic's collaboration.

Top Co-Authors

Avatar

Kartik Srinivasan

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daron A. Westly

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Jordan R. Stone

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Qing Li

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Scott A. Diddams

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Scott B. Papp

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Tara E. Drake

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Travis C. Briles

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge