B. Rosemary Grant
Princeton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. Rosemary Grant.
Nature | 2006
Arhat Abzhanov; Winston Patrick Kuo; Christine Hartmann; B. Rosemary Grant; Peter R. Grant; Clifford J. Tabin
A classic textbook example of adaptive radiation under natural selection is the evolution of 14 closely related species of Darwins finches (Fringillidae, Passeriformes), whose primary diversity lies in the size and shape of their beaks. Thus, ground finches have deep and wide beaks, cactus finches have long and pointed beaks (low depth and narrower width), and warbler finches have slender and pointed beaks, reflecting differences in their respective diets. Previous work has shown that even small differences in any of the three major dimensions (depth, width and length) of the beak have major consequences for the overall fitness of the birds. Recently we used a candidate gene approach to explain one pathway involved in Darwins finch beak morphogenesis. However, this type of analysis is limited to molecules with a known association with craniofacial and/or skeletogenic development. Here we use a less constrained, complementary DNA microarray analysis of the transcripts expressed in the beak primordia to find previously unknown genes and pathways whose expression correlates with specific beak morphologies. We show that calmodulin (CaM), a molecule involved in mediating Ca2+ signalling, is expressed at higher levels in the long and pointed beaks of cactus finches than in more robust beak types of other species. We validated this observation with in situ hybridizations. When this upregulation of the CaM-dependent pathway is artificially replicated in the chick frontonasal prominence, it causes an elongation of the upper beak, recapitulating the beak morphology of the cactus finches. Our results indicate that local upregulation of the CaM-dependent pathway is likely to have been a component of the evolution of Darwins finch species with elongated beak morphology and provide a mechanistic explanation for the independence of beak evolution along different axes. More generally, our results implicate the CaM-dependent pathway in the developmental regulation of craniofacial skeletal structures.
Evolution | 1995
Peter R. Grant; B. Rosemary Grant
Microevolution of quantitative traits in the wild can be predicted from a knowledge of selection and genetic parameters. Testing the predictions requires measurement of the offspring of the selected group, a requirement that is difficult to meet. We present the results of a study of Darwins finches on the Galápagos island of Daphne Major where this requirement is met. The study demonstrates microevolutionary consequences of natural selection.
Evolution | 1996
B. Rosemary Grant; Peter R. Grant
Songs of Darwins finches were studied on the Galápagos Island of Daphne Major from 1976 to 1995. A single, structurally simple, and unvarying song is sung throughout life by each male of the two common species, Geospiza fortis (medium ground finch) and G. scandens (cactus finch). Songs of the two species differ strongly in quantitative features, and individual variation among males is much broader in G. fortis than in G. scandens. Although there are exceptions, songs of sons strongly resemble the songs of their fathers. They also resemble the songs of their paternal grandfathers, but not their maternal grandfathers, indicating that they are culturally inherited and not genetically inherited. Female G. fortis display a tendency to avoid mating with males that sing the same type of song as their father. They also avoid mating with males that sing heterospecific song, with very rare exceptions. Thus song, an evolving, culturally inherited trait, is an important factor in species recognition and mate choice. It constrains the mating of females to conspecifics, even when there is no genetic penalty to interbreeding, and thus may play a crucial role in species formation by promoting genetic isolation on secondary contact. The barrier is leaky in that occasional errors in song transmission result in misimprinting, which leads to a low incidence of hybridization and introgression. Introgression slows the rate of postzygotic isolation, but can produce individuals in novel genetic and morphological space that can provide the starting point of a new evolutionary trajectory.
Evolution | 1994
Peter R. Grant; B. Rosemary Grant
Morphological consequences of hybridization were studied in a group of three interbreeding species of Darwins finches on the small Galápagos island of Daphne Major in the inclusive years 1976 to 1992. Geospiza fortis bred with G. scandens and G. fuliginosa. Although interbreeding was always rare (< 5%), sufficient samples of measurements of hybrids and backcrosses were accumulated for analysis. Five beak and body dimensions and mass were measured, and from these two synthetic (principal‐component) traits were constructed. All traits were heritable in two of the interbreeding species (G. fuliginosa were too rare to be analyzed) and in the combined samples of F, hybrids and backcrosses to G. fortis. In agreement with expectations from a model of polygenic inheritance, hybrid and backcross classes were generally phenotypically intermediate between the breeding groups that had produced them. Hybridization increased additive genetic and environmental variances, increased heritabilities to a moderate extent, and generally strengthened phenotypic and genetic correlations. New additive genetic variance introduced by hybridization is estimated to be two to three orders of magnitude greater than that introduced by mutation. Enhanced variation facilitates directional evolutionary change, subject to constraints arising from genetic correlations between characters. The Darwins finch data suggest that these constraints become stronger when species with similar proportions hybridize, but some become weaker when the interbreeding species have different allometries. This latter effect of hybridization, together with an enhancement of genetic variation, facilitates evolutionary change in a new direction.
Evolution | 2002
Lukas F. Keller; Peter R. Grant; B. Rosemary Grant; Kenneth Petren
Abstract Understanding the fitness consequences of inbreeding (inbreeding depression) is of importance to evolutionary and conservation biology. There is ample evidence for inbreeding depression in captivity, and data from wild populations are accumulating. However, we still lack a good quantitative understanding of inbreeding depression and what influences its magnitude in natural populations. Specifically, the relationship between the magnitude of inbreeding depression and environmental severity is unclear. We quantified inbreeding depression in survival and reproduction in populations of cactus finches (Geospiza scandens) and medium ground finches (Geospiza fortis) living on Isla Daphne Major in the Galapagos Archipelago. Our analyses showed that inbreeding strongly reduced the recruitment probability (probability of breeding given that an adult is alive) in both species. Additionally, in G. scandens, first‐year survival of an offspring withf= 0.25 was reduced by 21% and adults withf= 0.25 experienced a 45% reduction in their annual probability of survival. The magnitude of inbreeding depression in both adult and juvenile survival of this species was strongly modified by two environmental conditions, food availability and number of competitors. In juveniles, inbreeding depression was only present in years with low food availability, and in adults inbreeding depression was five times more severe in years with low food availability and large population sizes. The combination of relatively severe inbreeding depression in survival and the reduced recruitment probability led to the fact that very few inbred G. scandens ever succeeded in breeding. Other than recruitment probability, no other trait showed evidence of inbreeding depression in G. fortis, probably for two reasons: a relatively high rate of extrapair paternity (20%), which may lead to an underestimate of the apparent inbreeding depression, and low sample sizes of highly inbred G. fortis, which leads to low statistical power. Using data from juvenile survival, we estimated the number of lethal equivalents carried by G. scandens, G. fortis, and another congener, G. magnirostris. These results suggest that substantial inbreeding depression can exist in insular populations of birds, and that the magnitude of the inbreeding depression is a function of environmental conditions.
Ecology | 1996
B. Rosemary Grant; Peter R. Grant
Three species of Darwins finches (Geospiza fortis, G. scandens, and G. fuliginosa) hybridize rarely on the small Galdpagos island of Daphne Major. Following the exceptionally severe El Niiio event of 1982-1983, hybrids survived as well as, and in some cases better than, the parental species during dry seasons of potential food limitation. They also backcrossed to two of the parental species. This study was undertaken to compare the diets of hybrids with the diets of the parental species in order to assess possible reasons for the high hybrid survival. Diets of F1 hybrids and first generation backcrosses to G. fortis were intermediate between the diets of the respective parental species. Distinctiveness of the hybrid diets was most pronounced where the diets of the parental species differed most. A strong determinant was beak morphology; hybrids inherit beak traits from both parents, and, on average, have intermediate beak sizes. Among the combined groups of species and hybrids, and among the hybrids alone, dietary characteristics covaried with beak morphology. Hybrids that differ most from G. fortis in beak morphology, the G. fortis X G. scandens F, hybrids, experience a feeding efficiency advantage when feeding on Opuntia echios seeds, commonly consumed in the dry season. These findings are used to interpret the higher survival of hybrids after 1983 than beforehand. The El Ninio event that year led to an enduring (10-yr) change in the habitat and plant composition of the island. A decrease in absolute and relative abundance of large and hard seeds apparently caused relatively high mortality among G. scandens and the largest G. fortis individuals. Hybrids were favored by an abundance of small seeds. The high survival of G. fortis x G. scandens F1 hybrids may have been due, additionally, to a broad diet and to efficient exploitation of Opuntia seeds. The study demonstrates long-term ecological and evolutionary consequences of large-scale fluctuations in climate, and the role of ecological (food) factors in determining hybrid fitness.
Evolution | 2004
Peter R. Grant; B. Rosemary Grant; Jeffrey A. Markert; Lukas F. Keller; Kenneth Petren
Abstract Between 1973 and 2003 mean morphological features of the cactus finch, Geospiza scandens, and the medium ground finch, G. fortis, populations on the Galápagos island of Daphne Major were subject to fluctuating directional selection. An increase in bluntness or robustness in the beak of G. scandens after 1990 can only partly be explained by selection. We use 16 microsatellite loci to test predictions of the previously proposed hypothesis that introgressive hybridization contributed to the trend, resulting in genes flowing predominantly from G. fortis to G. scandens. To identify F1 hybrids and backcrosses we use pedigrees where known, supplemented by the results of assignment tests based on 14 autosomal loci when parents were not known. We analyze changes in morphology and allelic composition in the two populations over a period of 15–20 years. With samples that included F1 hybrids and backcrosses, the G. scandens population became more similar to the G. fortis population both genetically and morphologically. Gene flow between species was estimated to be three times greater from G. fortis to G. scandens than in the opposite direction, resulting in a 20% reduction in the genetic difference between the species. Nevertheless, removing identified F1 hybrids and backcrosses from the total sample and reanalyzing the traits did not eliminate the convergence. The two species also converged in beak shape by 22.2% and in body size by 45.5%. A combination of introgressive hybridization and selection jointly provide the best explanation of convergence in morphology and genetic constitution under the changed ecological conditions following a major El Niño event in 1983. The study illustrates how species without postmating barriers to gene exchange can alternate between convergence and divergence when environmental conditions oscillate.
Ecology | 2000
Peter R. Grant; B. Rosemary Grant; Lukas F. Keller; Kenneth Petren
We studied the effects of heavy and prolonged rainfall associated with four El Nino events on the reproduction of Darwins finches on the Galapagos island of Daphne Major. Rainfall varied in the El Nino years from 195 mm to 1359 mm, exceeding the maximum in the other years by 40% to 1000%. Two species were studied: Geospiza fortis, Medium Ground Finch, and G. scandens, Cactus Finch. Almost all eggs, nestlings, and fledglings produced by banded females were recorded in the El Nino years of 1983, 1987, 1991, and 1998. Finch production in these years was compared with production in 10 other years of breeding in the period 1976-1990; there was no breeding in three drought years, 1985, 1988, and 1989. Breeding differed in the two sets of years in several ways. More broods were produced in El Nino years than in non-El Nino years (maximum 10 clutches per female vs. five clutches), the period of breeding was longer (maximum eight months vs. four), average clutch sizes (range 2-6 eggs) were distinctly larger (four vs. three), and average egg and fledgling production per female was larger by a factor of four. The two species differed in some features of breeding, but differences were minor in comparison with the marked seasonal and annual variation. Finch production varied among El Nino years, being greatest in the year of most rain over the longest period (1983), and least in the next wettest year (1998). The surprisingly low production in 1998 is attributed in part to interactions with other finches, and in part to exceptionally high temperatures. Temperature, although postively correlated with rainfall, had an independent negative effect upon hatching and overall breeding success of G. fortis. Breeding by both species in the year of birth (hatch) occurred in two El Nino years with the most extended wet seasons: 1983 and 1987. Young breeders had lower clutch sizes and breeding success than did contemporaneously breeding older birds. Observations in different El Nino years show that finch population responses to major climatic perturbations such as elevated rainfall vary for two major reasons: the perturbations themselves vary in strength and duration, and responses to them are determined, in part, by preceding conditions. Those preceding conditions, in turn, are determined by whether drought or normal conditions precede the perturbation, and on the interval since the previous El Nino event. Thus, perturbations of natural systems can be fully understood only in a broad temporal context.
The American Naturalist | 2005
Peter R. Grant; B. Rosemary Grant; Kenneth Petren
The question we address in this article is how hybridization in the recent past can be detected in recently evolved species. Such species may not have evolved genetic incompatibilities and may hybridize with little or no fitness loss. Hybridization can be recognized by relatively small genetic differences between sympatric populations because sympatric populations have the opportunity to interbreed whereas allopatric populations do not. Using microsatellite DNA data from Darwin’s finches in the Galápagos archipelago, we compare sympatric and allopatric genetic distances in pairs of Geospiza and Camarhynchus species. In agreement with the hybridization hypothesis, we found a statistically strong tendency for a species to be more similar genetically to a sympatric relative than to allopatric populations of that relative. Hybridization has been studied directly on two islands, but it is evidently more widespread in the archipelago. We argue that introgressive hybridization may have been a persistent feature of the adaptive radiation through most of its history, facilitating evolutionary diversification and occasionally affecting both the speed and direction of evolution.
Evolution | 2006
Brian S. Arbogast; Sergei V. Drovetski; Robert L. Curry; Peter T. Boag; Gilles Seutin; Peter R. Grant; B. Rosemary Grant; David J. Anderson
Abstract Evolutionary radiations of colonists on archipelagos provide valuable insight into mechanisms and modes of speciation. The apparent diversification of Galapagos mockingbirds (Nesomimus) provoked Darwins initial conception of adaptive radiation, but the monophyly of this historically important exemplar has not been evaluated with molecular data. Additionally, as with most Galapagos organisms, we have a poor understanding of the temporal pattern of diversification of the mockingbirds following colonization(s) from source populations. Here we present a molecular phylogeny of Galapagos and other mockingbird populations based on mitochondrial sequence data. Monophyly of Galapagos mockingbirds was supported, suggesting a single colonization of the archipelago followed by diversification. Our analyses also indicate that Nesomimus is nested within the traditional genus Mimus, making the latter paraphyletic, and that the closest living relatives of Galapagos mockingbirds appear to be those currently found in North America, northern South America, and the Caribbean, rather than the geographically nearest species in continental Ecuador. Thus, propensity for over‐water dispersal may have played a more important role than geographic proximity in the colonization of Galapagos by mockingbirds. Within Galapagos, four distinct mitochondrial DNA clades were identified. These four clades differ from current taxonomy in several important respects. In particular, mockingbirds in the eastern islands of the archipelago (Española, San Cristóbal, and Genovesa) have very similar mitochondrial DNA sequences, despite belonging to three different nominal species, and mockingbirds from Isabela, in the west of the archipelago, are more phylogenetically divergent than previously recognized. Consistent with current taxonomy is the phylogenetic distinctiveness of the Floreana mockingbird (N. trifasciatus) and close relationships among most mockingbirds from the central and northern region of the archipelago (currently considered conspecific populations of N. parvulus). Overall, phylogeographic patterns are consistent with a model of wind‐based dispersal within Galapagos, with colonization of more northerly islands by birds from more southern populations, but not the reverse. Further radiation in Galapagos would require coexistence of multiple species on individual islands, but this may be prevented by relatively limited morphological divergence among mockingbirds and by lack of sufficient habitat diversity in the archipelago to support more than one omnivorous mimid