B. Sierau
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. Sierau.
Atmospheric Environment | 2003
D. Orsini; Y. Ma; Amy P. Sullivan; B. Sierau; Karsten Baumann; Rodney J. Weber
An improved particle-into-liquid sampler (PILS) has proven successful in both ground-based and aircraft experiments for rapid measurements of soluble aerosol chemical composition. Major modifications made to the prototype PILS (Aerosol Sci. Technol. 35 (2001) 718) improve particle collection at higher sample flow (15–17 l min � 1 ) while maintaining minimal sample dilution. Laboratory experiments using a fluorescent calibration aerosol aided in designing the present system and characterized the PILS collection efficiency as a function of particle size. Collection efficiency for particle diameters Dp between 0.03 and 10mm is greater than 97%. In addition, the instrument now samples at low pressures (0.3 atmosphere) necessary for airborne measurements up to approximately 8 km in altitude. An ion chromatograph (IC) is coupled to the PILS for direct on-line analysis of the collected sample (hence the name ‘PILS-IC’). Proper selection of columns and eluants allows for 3.5–4 min separation of 9 major inorganic species (Na + , NH4 ,K + ,C a 2+ ,M g 2+ ,C l � ,N O 3 ,N O 2 ,S O 4� ), while acetate, formate, and oxalate, are also possible in 15 min. Any analytical technique capable of continuous online analysis of a liquid sample can be coupled to the PILS for quantitative semi-continuous measurements of aerosol composition. Changes made to the prototype are explained and data from a recent experiment are compared with standard integrated filter measurements. r 2003 Elsevier Science Ltd. All rights reserved.
Environmental Research Letters | 2011
Torsten Tritscher; Z. Jurányi; M. Martin; R. Chirico; M. Gysel; Maarten F. Heringa; P. F. DeCarlo; B. Sierau; André S. H. Prévôt; E. Weingartner; Urs Baltensperger
Soot particles are an important component of atmospheric aerosol and their interaction with water is important for their climate effects. The hygroscopicity of fresh and photochemically aged soot and secondary organic aerosol (SOA) from diesel passenger car emissions was studied under atmospherically relevant conditions in a smog chamber at sub-and supersaturation of water vapor. Fresh soot particles show no significant hygroscopic growth nor cloud condensation nucleus (CCN) activity. Ageing by condensation of SOA formed by photooxidation of the volatile organic carbon (VOC) emission leads to increased water uptake and CCN activity as well as to a compaction of the initially non-spherical soot particles when exposed to high relative humidity (RH). It is important to consider the latter effect for the interpretation of mobility based measurements. The vehicle with oxidation catalyst (EURO3) emits much fewer VOCs than the vehicle without after-treatment (EURO2). Consequently, more SOA is formed for the latter, resulting in more pronounced effects on particle hygroscopicity and CCN activity. Nevertheless, the aged soot particles did not reach the hygroscopicity of pure SOA particles formed from diesel VOC emissions, which are similarly hygroscopic (0.06 < κH − TDMA < 0.12 and 0.09 < κCCN < 0.14) as SOA from other precursor gases investigated in previous studies.
Faraday Discussions | 2005
Yoshiteru Iinuma; Olaf Böge; Yunkun Miao; B. Sierau; Thomas Gnauk; Hartmut Herrmann
The formation of secondary organic aerosol (SOA) following the ozonolysis of terpene has been investigated intensively in recent years. The enhancement of SOA yields from the acid catalysed reactions of organics on aerosol surfaces or in the bulk particle phase has been receiving great attention. Recent studies show that the presence of acidic seed particles increases the SOA yield significantly (M. S. Jang and R. M. Kamens, Environ. Sci. Technol., 2001, 35, 4758, ref. 1; M. S. Jang, N. M. Czoschke, S. Lee and R. M. Kamens, Science, 2002, 298, 814, ref. 2; N. M. Czoschke, M. Jang and R. M. Kamens, Atmos. Environ., 2003, 37, 4287, ref. 3; M. S. Jang, B. Carroll, B. Chandramouli and R. M. Kamens, Environ. Sci. Technol., 2003, 37, 3828, ref. 4; Y. Iinuma, O. Böge, T. Gnauk and H. Herrmann, Atmos. Environ., 2004, 38, 761, ref. 5; S. Gao, M. Keywood, N. L. Ng, J. Surratt, V. Varutbangkul, R. Bahreini, R. C. Flagan and J. H. Seinfeld, J. Phys. Chem. A, 2004, 108, 10147, ref. 6). More detailed studies report the formation of higher molecular weight products in SOA (refs. 5 and 6; M. P. Tolocka, M. Jang, J. M. Ginter, F. J. Cox, R. M. Kamens and M. V. Johnston, Environ. Sci. Technol., 2004, 38, 1428, ref. 7; S. Gao, N. L. Ng, M. Keywood, V. Varutbangkul, R. Bahreini, A. Nenes, J. He, K. Y. Yoo, J. L. Beauchamp, R. P. Hodyss, R. C. Flagan and J. H. Seinfeld, Environ. Sci. Technol., 2004, 38, 6582, ref. 8) which could result in a non-reversible uptake of organics into the particle phase. Most of the past studies concentrated on the characterisation of the yields of enhanced SOA and its composition from ozonolysis of terpenes in the presence or absence of acidic and neutral seed particles. Recent findings from cyclohexene ozonolysis show that the presence of OH scavengers can also significantly influence the SOA yield. Our new results from the IfT chemistry department aerosol chamber on terpene ozonolysis in the presence of OH scavengers show that the presence of hydroxyl radical scavengers clearly reduces the amount of formed SOA. The OH scavenger strongly depletes the formation of oligomeric compounds in the particle phase in contrast to previous findings (M. D. Keywood, J. H. Kroll, V. Varatbangkul, R. Bahreini, R. C. Flagan and J. H. Seinfeld, Environ. Sci. Technol., 2004, 38, 3343, ref. 9). This result indicates that hydroxyl radicals play an important role in the formation of precursor compounds (e.g., hydroxy pinonaldehyde) for the particle phase heterogeneous acid catalysed reactions leading to the higher molecular weight compounds and thus the enhancement of SOA yields. Better understanding of the role of hydroxyl radicals in the formation of SOA is necessary to distinguish between the contribution of ozonolysis and hydroxyl radicals to the SOA yield. If the recent findings are a ubiquitous phenomenon in the atmosphere, current atmospheric and climate models might underestimate SOA formation yields, particle phase OC contents and its impact on the atmospheric radiation budget.
Aerosol Science and Technology | 2015
Prem Lobo; Lukas Durdina; Gregory J. Smallwood; Theodor Rindlisbacher; Frithjof Siegerist; Elizabeth Black; Zhenhong Yu; A. A. Mensah; Donald E. Hagen; Richard C. Miake-Lye; Kevin A. Thomson; Benjamin T. Brem; Joel C. Corbin; Manuel Abegglen; B. Sierau; Philip D. Whitefield; Jing Wang
This study reports the first of a kind data on aircraft engine non-volatile particulate matter (nvPM) number- and mass-based emissions using standardized systems. Two compliant sampling and measurement systems operated by Missouri University of Science and Technology (Missouri S&T) and Empa were evaluated during the Aviation - Particle Regulatory Instrumentation Demonstration Experiment (A-PRIDE) 4 campaign at the SR Technics facilities in Zürich, Switzerland, in November 2012. The Missouri S&T and Empa systems were compared during a series of dedicated engine tests using a CFM56-5B4/2P engine source, and maintenance engine testing using CFM56-7B24/3 and PW4168A engine sources at a range of engine operating conditions. These two compliant systems were found to agree within 6% of each other in terms of nvPM number-based emissions, and within 15% for nvPM mass-based emissions. For the three engine sources studied, at several engine power conditions the mass instruments approached their limit of detection, resulting in high measurement uncertainties. Ancillary instrumentation was used to determine PM size distributions, chemical composition, and effective density from mass-mobility experiments. Particle geometric mean mobility diameter ranged 20–45 nm, and geometric standard deviation varied from 1.55 to 1.9 for the three engine types studied. The fraction of PM organic content measured in the emissions from the CFM56-5B4/2P engine was ∼4% while the size-dependent particle effective density was parameterized with a mass-mobility exponent of 2.57 and a pre-factor of 0.606. Results of this study will contribute to the development of the new nvPM emissions certification standard and emissions inventories from commercial aviation operations.
Aerosol Science and Technology | 2015
Joel C. Corbin; Alejandro Keller; Ulrike Lohmann; Heinz Burtscher; B. Sierau; A. A. Mensah
Logwood and pellet stoves are popular heating sources around the world. The particulate matter emitted from such stoves contains organic particulate matter (OM), soot, and ash, each of which may have significant effects on climate and health. In this study, the primary OM (POM) emitted from a wood stove and a pellet stove operated according to standard Swiss testing protocols were characterized using aerosol mass spectrometry. The POM mass spectra were found to be highly reproducible, and contained CO+ as the dominant ion. Because the POM emitted by such stoves is typically enhanced by the condensation of gaseous organics following atmospheric aging, the secondary OM (SOM) formation potential of these stoves was simulated using the Micro Smog Chamber (MSC) designed by Keller and Burtscher in 2012. In general, OM emission factors from MSC-aged aerosols were comparable to lower-time-resolution results from the literature, although the MSC exposed aerosols to much higher concentrations of oxidants and therefore produced OM that was more oxidized than expected for atmospheric samples. In addition, the logwood-stove particles remained highly aspherical even after oxidation, indicating that mixing with an external aerosol is required for these particles to become spherical. The one exception to this observation occurred when the wood failed to ignite and appeared to generate tar-ball OM particles.
Journal of Aerosol Science | 2003
B. Sierau; Frank Stratmann; Matthias Pelzing; Christian Neusüß; Diana Hofmann; Martin Wilck
Abstract An off-line method for rapid analysis of submicrometer organic atmospheric aerosol particles was developed. The method first uses condensational growth of submicrometer particles and then impaction to collect the particles for off-line chemical analysis. This condensation-growth and impaction system (C-GIS) converts the aerosol into a hydrosol that can be readily drawn into a variety of systems for chemical analysis. The analytical instrument we used to test the C-GIS was a capillary electrophoresis system that uses either indirect UV-detection or mass spectrometric detection. In this paper we show results for non-size segregated, off-line analysis of real atmospheric particles ( μm ). The chemical composition was determined from atmospheric aerosol samples collected with sampling times of 10 min . If size-segregated measurements are desired, the C-GIS can be coupled to a differential mobility analyzer (DMA) to permit size-classification upstream of the C-GIS. The feasibility of using the C-GIS for making rapid chemical characterization of size-segregated submicrometer aerosol particles was evaluated by using the system to condition and collect laboratory-generated model organic aerosol particles and subsequent analysis. The results indicate that the C-GIS can be used for size-segregated particle sampling with subsequent off-line chemical particle analysis with a sampling time of at least 20 min under typical atmospheric conditions. For atmospheric applications, however, its capability to rapidly measure size-segregated chemical composition is limited by the particle concentration present downstream of the DMA, and therefore, such measurements typically can only be made in heavily polluted areas or within the scope of source-characterization studies.
Journal of Geophysical Research | 2016
I. Steinke; R. Funk; J. Busse; A. Iturri; Silke Kirchen; M. Leue; O. Möhler; Thomas Schwartz; Martin Schnaiter; B. Sierau; E. Toprak; R. Ullrich; A. Ulrich; C. Hoose; Thomas Leisner
Soil dust particles emitted from agricultural areas contain considerable mass fractions of organic material. Also, soil dust particles may act as carriers for potentially ice-active biological particles. In this work, we present ice nucleation experiments conducted in the AIDA cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. The results are expressed as ice nucleation active surface site (INAS) densities and presented for the immersion freezing and the deposition nucleation mode. For immersion freezing occurring at 254 K, samples from Argentina, China and Germany show ice nucleation efficiencies which are by a factor 10 higher than desert dusts. On average, the difference in ice nucleation efficiencies between agricultural and desert dusts becomes significantly smaller at temperatures below 247 K. In the deposition mode the soil dusts showed higher ice nucleation activity than Arizona Test Dust over a temperature range between 232 and 248 K, and humidities RHice up to 125%. INAS densities varied between 109 and 1011 m-2 for these thermodynamic conditions. For one soil dust sample (Argentinian Soil), the effect of treatments with heat was investigated. Heat treatments (383 K) did not affect the ice nucleation efficiency observed at 249 K. This finding presumably excludes proteinaceous ice nucleating entities as the only source of the increased ice nucleation efficiency.
Atmospheric Chemistry and Physics | 2007
Robert Bergström; Peter Pilewskie; Philip B. Russell; J. Redemann; Tami C. Bond; Patricia K. Quinn; B. Sierau
Atmospheric Chemistry and Physics | 2010
Ryan C. Sullivan; Markus D. Petters; Paul J. DeMott; Sonia M. Kreidenweis; Heike Wex; D. Niedermeier; Susan Hartmann; T. Clauss; Frank Stratmann; P. Reitz; Johannes Schneider; B. Sierau
Environmental Science & Technology | 2009
M. Claeys; Yoshiteru Iinuma; Rafal Szmigielski; Jason D. Surratt; Frank Blockhuys; Christian Van Alsenoy; Olaf Böge; B. Sierau; Yadian Gómez-González; Reinhilde Vermeylen; Pieter Van der Veken; Mona Shahgholi; Arthur W. H. Chan; Hartmut Herrmann; John H. Seinfeld; Willy Maenhaut