Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. T. Gänsicke is active.

Publication


Featured researches published by B. T. Gänsicke.


Science | 2006

A Gaseous Metal Disk Around a White Dwarf

B. T. Gänsicke; T. R. Marsh; J. Southworth; A. Rebassa-Mansergas

The destiny of planetary systems through the late evolution of their host stars is very uncertain. We report a metal-rich gas disk around a moderately hot and young white dwarf. A dynamical model of the double-peaked emission lines constrains the outer disk radius to just 1.2 solar radii. The likely origin of the disk is a tidally disrupted asteroid, which has been destabilized from its initial orbit at a distance of more than 1000 solar radii by the interaction with a relatively massive planetesimal object or a planet. The white dwarf mass of 0.77 solar mass implies that planetary systems may form around high-mass stars.


Astronomy and Astrophysics | 2003

The age, life expectancy, and space density of Post Common Envelope Binaries

M. R. Schreiber; B. T. Gänsicke

We present a sample of 30 well observed Post Common Envelope Binaries (PCEBs). Deriving the cooling age of the white dwarfs, we show that the PCEB population is dominated by young systems. Having calculated the orbital evolution of the systems under the assumption of two different prescriptions for the angular momentum loss, we find that most of the systems have not yet completed a significant fraction of their PCEB life time. We therefore predict the existence of a large population of old PCEBs containing cold white dwarfs (Teff 4 h) CV, and a significant fraction of the systems will start mass transfer in the period gap. Having estimated the distances of the PCEBs in the sample, we derive a space density of ρPCEB ∼ 6−30 × 10 −6 pc −3 , depending on the assumed angular momentum loss prescription. Taking into account the evolutionary time scales we compute a lower limit for the CV space density, predicted by the currently known PCEB population of ρCV > 10 −5 pc −3 . Finally, we discuss possible observational


Astronomy and Astrophysics | 2011

Post common envelope binaries from SDSS - XI. The white dwarf mass distributions of CVs and pre-CVs

M. Zorotovic; M. R. Schreiber; B. T. Gänsicke

Context. We have known for a long time that many of the measured white dwarf (WD) masses in cataclysmic variables (CVs) significantly exceed the mean mass of single WDs. This was thought to be related to observational biases, but recent high-precision measurements of WD masses in a great number of CVs are challenging this interpretation. A crucial question in this context is whether the high WD masses seen among CVs are already imprinted in the mass distribution of their progenitors, i.e. among detached postcommon-envelope binaries (PCEBs) that consist of a WD and a main-sequence star. Aims. We review the measured WD masses of CVs, determine the WD-mass distribution of an extensive sample of PCEBs that are representative for the progenitors of the current CV population (pre-CVs) and compare both distributions. Methods. We calculate the CV formation time of the PCEBs in our sample by determining the post common-envelope (CE) and the main-sequence evolution of the binary systems and define a pre-CV to be a PCEB that evolves into a semi-detached configuration with stable mass transfer within less than the age of the Galaxy. Possible observational biases affecting the WD-mass distribution for the pre-CV and the CV samples are discussed.


Astronomy and Astrophysics | 2014

The frequency of planetary debris around young white dwarfs

D. Koester; B. T. Gänsicke; J. Farihi

Context. Heavy metals in the atmospheres of white dwarfs are thought in many cases to be accreted from a circumstellar debris disk, which was formed by the tidal disruption of a rocky planetary body within the Roche radius of the star. The abundance analysis of photospheric elements and conclusions about the chemical composition of the accreted matter are a new and promising method of studying the composition of extrasolar planetary systems. However, ground-based searches for metal-polluted white dwarfs that rely primarily on the detection of the Ca ii K line become insensitive at Teff > 15 000 K because this ionization state depopulates. Aims. We present the results of the first unbiased survey for metal pollution among hydrogen-atmosphere (DA type) white dwarfs with cooling ages in the range 20–200 Myr and 17 000 K 23 000 K, in excellent agreement with the absence of infrared excess from dust around these warmer stars. The median, main sequence progenitor of our sample corresponds to an A-type star of ≈2 M� , and we find 13 of 23 white dwarfs descending from


Astronomy and Astrophysics | 2010

Post-common-envelope binaries from SDSS - IX: Constraining the common-envelope efficiency

M. Zorotovic; M. R. Schreiber; B. T. Gänsicke; A. Nebot Gómez-Morán

Context. Reconstructing the evolution of post-common-envelope binaries (PCEBs) consisting of a white dwarf and a main-sequence star can constrain current prescriptions of common-envelope (CE) evolution. This potential could so far not be fully exploited due to the small number of known systems and the inhomogeneity of the sample. Recent extensive follow-up observations of white dwarf/main-sequence binaries identified by the Sloan Digital Sky Survey (SDSS) paved the way for a better understanding of CE evolution. Aims. Analyzing the new sample of PCEBs we derive constraints on one of the most important parameters in the field of close compact binary formation, i.e. the CE efficiency α. Methods. After reconstructing the post-CE evolution and based on fits to stellar evolution calculations as well as a parametrized energy equation for CE evolution, we determine the possible evolutionary histories of the observed PCEBs. In contrast to most previous attempts we incorporate realistic approximations of the binding energy parameter λ. Each reconstructed CE history corresponds to a certain value of the mass of the white dwarf progenitor and – more importantly – the CE efficiency α. We also reconstruct CE evolution replacing the classical energy equation with a scaled angular momentum equation and compare the results obtained with both algorithms. Results. We find that all PCEBs in our sample can be reconstructed with the energy equation if the internal energy of the envelope is included. Although most individual systems have solutions for a broad range of values for α, only for α = 0.2–0.3 do we find simultaneous solutions for all PCEBs in our sample. If we adjust α to this range of values, the values of the angular momentum parameter γ cluster in a small range of values. In contrast if we fix γ to a small range of values that allows us to reconstruct all our systems, the possible ranges of values for α remains broad for individual systems. Conclusions. The classical parametrized energy equation seems to be an appropriate prescription of CE evolution and turns out to constrain the outcome of the CE evolution much more than the alternative angular momentum equation. If there is a universal value of the CE efficiency, it should be in the range of α = 0.2–0.3. We do not find any indications for a dependence of α on the mass of the secondary star or the final orbital period.


Monthly Notices of the Royal Astronomical Society | 2008

On the evolutionary status of short-period cataclysmic variables

S. P. Littlefair; V. S. Dhillon; T. R. Marsh; B. T. Gänsicke; J. Southworth; Isabelle Baraffe; C. A. Watson; C. M. Copperwheat

We present high-speed, three-colour photometry of seven short-period (P-orb <= 95 min) eclipsing cataclysmic variables (CVs) from the Sloan Digital Sky Survey. We determine the system parameters via a parametrized model of the eclipse fitted to the observed light curve by chi(2) minimization. Three out of seven of the systems possess brown dwarf donor stars and are believed to have evolved past the orbital period minimum. This is in line with the predictions that 40-70 per cent of CVs should have evolved past the orbital period minimum. Therefore, the main result of our study is that the missing population of post-period minimum CVs has finally been identified. The donor star masses and radii are, however, inconsistent with model predictions; the donor stars are approximately 10 per cent larger than expected across the mass range studied here. One explanation for the discrepancy is the enhanced angular momentum loss (e.g. from circumbinary discs); however, the mass-transfer rates, as deduced from white dwarf effective temperatures, are not consistent with enhanced angular momentum loss. We show that it is possible to explain the large donor radii without invoking enhanced angular momentum loss by a combination of geometrical deformation and the effects of starspots due to strong rotation and expected magnetic activity. Choosing unambiguously between these different solutions will require independent estimates of the mass-transfer rates in short-period CVs. The white dwarfs in our sample show a strong tendency towards high masses. We show that this is unlikely to be due to selection effects. The dominance of high-mass white dwarfs in our sample implies that erosion of the white dwarf during nova outbursts must be negligible, or even that white dwarfs grow in mass through the nova cycle. Amongst our sample, there are no helium-core white dwarfs, despite predictions that 30-80 per cent of short-period CVs should contain helium-core white dwarfs. We are unable to rule out selection effects as the cause of this discrepancy.


The Astrophysical Journal | 2009

CATACLYSMIC VARIABLE PRIMARY EFFECTIVE TEMPERATURES: CONSTRAINTS ON BINARY ANGULAR MOMENTUM LOSS

Dean M. Townsley; B. T. Gänsicke

We review the most decisive currently available measurements of the surface effective temperatures, T eff, of white dwarf (WD) primaries in cataclysmic variables (CVs) during accretion quiescence, and use these as a diagnostic for their time-averaged accretion rate, . Using time-dependent calculations of the WD envelope, we investigate the sensitivity of the quiescent T eff to long-term variations in the accretion rate. We find that the quiescent T eff provides one of the best available tests of predictions for the angular momentum loss and resultant mass-transfer rates which govern the evolution of CVs. While gravitational radiation is completely sufficient to explain the of strongly magnetic CVs at all P orb, faster angular momentum loss is required to explain the temperatures of dwarf nova primaries (nonmagnetic systems). This provides evidence that a normal stellar magnetic field structure near the secondary, providing for wind launching and attachment, is essential for the enhanced braking mechanism to work, directly supporting the well-known stellar wind braking hypothesis. The contrast in is most prominent for orbital periods P orb > 3 h, above the so-called period gap, where differs by orders of magnitude, but a modest enhancement is also present at shorter P orb. The averaging time which reflects depends on itself, being as much as 105 years for low- systems and as little as 103 years for high- systems. We discuss in some detail the security of conclusions drawn about the CV population in light of these time scales and our necessarily incomplete sample of systems, finding that, due to the time necessary for the quiescent T eff to adjust, the consistency of measurements between different systems places significant constraints on possible long-timescale variation in . Measurements for nonmagnetic systems above the period gap fall below predictions from traditional stellar wind braking prescriptions, but above more recent predictions with somewhat weaker angular momentum loss. We also discuss the apparently high T effs found in the VY Scl stars, showing that these most likely indicate in this subclass even larger than predicted by stellar wind braking.


Monthly Notices of the Royal Astronomical Society | 2007

Post-common-envelope binaries from SDSS – I. 101 white dwarf main-sequence binaries with multiple Sloan Digital Sky Survey spectroscopy

A. Rebassa-Mansergas; B. T. Gänsicke; P. Rodríguez-Gil; M. R. Schreiber; D. Koester

We present a detailed analysis of 101 white dwarf main-sequence binaries (WDMS) from the Sloan Digital Sky Survey (SDSS) for which multiple SDSS spectra are available. We detect significant radial velocity variations in 18 WDMS, identifying them as post-common-envelope binaries (PCEBs) or strong PCEB candidates. Strict upper limits to the orbital periods are calculated, ranging from 0.43 to 7880 d. Given the sparse temporal sampling and relatively low spectral resolution of the SDSS spectra, our results imply a PCEB fraction of greater than or similar to 15 per cent among the WDMS in the SDSS data base. Using a spectral decomposition/fitting technique we determined the white dwarf effective temperatures and surface gravities, masses and secondary star spectral types for all WDMS in our sample. Two independent distance estimates are obtained from the flux-scaling factors between the WDMS spectra, and the white dwarf models and main-sequence star templates, respectively. Approximately one-third of the systems in our sample show a significant discrepancy between the two distance estimates. In the majority of discrepant cases, the distance estimate based on the secondary star is too large. A possible explanation for this behaviour is that the secondary star spectral types that we determined from the SDSS spectra are systematically too early by one to two spectral classes. This behaviour could be explained by stellar activity, if covering a significant fraction of the star by cool dark spots will raise the temperature of the interspot regions. Finally, we discuss the selection effects of the WDMS sample provided by the SDSS project.


Monthly Notices of the Royal Astronomical Society | 2010

First Kepler results on compact pulsators – I. Survey target selection and the first pulsators

Roy Ostensen; R. Silvotti; S. Charpinet; R. Oreiro; G. Handler; Elizabeth M. Green; S. Bloemen; Ulrich Heber; B. T. Gänsicke; T. R. Marsh; D. W. Kurtz; J. H. Telting; M. D. Reed; S. D. Kawaler; Conny Aerts; C. Rodríguez-López; M. Vučković; T. A. Ottosen; T. Liimets; A. C. Quint; Valérie Van Grootel; Suzanna K. Randall; R. L. Gilliland; Hans Kjeldsen; J. Christensen-Dalsgaard; William J. Borucki; David G. Koch; Elisa V. Quintana

We present results from the first two quarters of a survey to search for pulsations in compact stellar objects with the Kepler spacecraft. The survey sample and the various methods applied in its compilation are described, and spectroscopic observations are presented to separate the objects into accurate classes. From the Kepler photometry we clearly identify nine compact pulsators and a number of interesting binary stars. Of the pulsators, one shows the strong, rapid pulsations typical of a V361 Hya-type sdB variable (sdBV); seven show long-period pulsation characteristics of V1093 Her-type sdBVs; and one shows low-amplitude pulsations with both short and long periods. We derive effective temperatures and surface gravities for all the subdwarf B stars in the sample and demonstrate that below the boundary region where hybrid sdB pulsators are found, all our targets are pulsating. For the stars hotter than this boundary temperature a low fraction of strong pulsators (<10 per cent) is confirmed. Interestingly, the short-period pulsator also shows a low-amplitude mode in the long-period region, and several of the V1093 Her pulsators show low-amplitude modes in the short-period region, indicating that hybrid behaviour may be common in these stars, also outside the boundary temperature region where hybrid pulsators have hitherto been found.


Monthly Notices of the Royal Astronomical Society | 2010

Kepler observations of the beaming binary KPD 1946+4340

S. Bloemen; T. R. Marsh; Roy Ostensen; S. Charpinet; G. Fontaine; P. Degroote; Ulrich Heber; S. D. Kawaler; Conny Aerts; Elizabeth M. Green; J. H. Telting; P. Brassard; B. T. Gänsicke; G. Handler; D. W. Kurtz; R. Silvotti; Valérie Van Grootel; Johan E. Lindberg; T. Pursimo; P. A. Wilson; R. L. Gilliland; Hans Kjeldsen; J. Christensen-Dalsgaard; William J. Borucki; David G. Koch; J. M. Jenkins; Todd C. Klaus

The Kepler Mission has acquired 33.5 d of continuous 1-min photometry of KPD 1946+4340, a short-period binary system that consists of a subdwarf B star (sdB) and a white dwarf. In the light curve, eclipses are clearly seen, with the deepest occurring when the compact white dwarf crosses the disc of the sdB (0.4 per cent) and the more shallow ones (0.1 per cent) when the sdB eclipses the white dwarf. As expected, the sdB is deformed by the gravitational field of the white dwarf, which produces an ellipsoidal modulation of the light curve. Spectacularly, a very strong Doppler beaming (also known as Doppler boosting) effect is also clearly evident at the 0.1 per cent level. This originates from the sdB’s orbital velocity, which we measure to be 164.0 ± 1. 9k m s −1 from supporting spectroscopy. We present light-curve models that account for all these effects, as well as gravitational lensing, which decreases the apparent radius of the white dwarf by about 6 per cent, when it eclipses the sdB. We derive system parameters and uncertainties from the light curve using Markov chain Monte Carlo simulations. Adopting a theoretical white dwarf mass–radius relation, the mass of the subdwarf is found ,

Collaboration


Dive into the B. T. Gänsicke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula Szkody

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. M. Copperwheat

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge