Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. van Rietbergen is active.

Publication


Featured researches published by B. van Rietbergen.


Journal of Biomechanics | 1995

A NEW METHOD TO DETERMINE TRABECULAR BONE ELASTIC PROPERTIES AND LOADING USING MICROMECHANICAL FINITE-ELEMENT MODELS

B. van Rietbergen; Harrie Weinans; R. Huiskes; A. Odgaard

The apparent mechanical behavior of trabecular bone depends on properties at the tissue or trabecular level. Many investigators have attempted to determine trabecular tissue properties and loading. However, accuracy and applicability of all methods reported are limited. The small size of the trabeculae and a possible size effect are complicating factors when using traditional testing methods on single trabeculae. Other methods reported, using models that describe the trabecular structure, are of limited value because they consider bone as a repetitive structure in order to describe a reasonably large region of bone. The present study introduces a new finite-element method strategy that enables analysis of reasonably large regions of trabecular bone in full detail. The method uses three-dimensional serial reconstruction techniques to construct a large-scale FE model, by directly converting voxels to elements. A 5 mm cube of trabecular bone was modeled in this way, resulting in a FE model that consists of 296,679 elements. Special strategies were developed to solve the set of equations that results from the FE approach. Using this model in combination with experimental apparent data taken from the literature, the upper and lower boundaries for the tissue modulus were calculated to be 10.1 and 2.23 GPa, respectively. From the local stress and strain distributions it was concluded that the deformation mode of the trabeculae in the present cube was predominantly in bending. It was concluded that the method developed offers new perspectives for the study of trabecular bone.


Journal of Biomechanics | 1996

Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture

B. van Rietbergen; Anders Odgaard; J. Kabel; R. Huiskes

A method is presented to find orthotropic elastic symmetries and constants directly from the elastic coefficients in the overall stiffness matrix of trabecular bone test specimens. Contrary to earlier developed techniques, this method does not require pure orthotropic behavior or additional fabric measurements. The method uses high-resolution computer reconstructions of trabecular bone specimens as input for large-scale FE-analyses to determine all the 21 elastic coefficients in the overall stiffness matrix of the specimen, using a direct mechanics approach. An optimization procedure is then used to find the coordinate transformation that yields the best orthotropic representation of this matrix. The method is illustrated here relative to two trabecular bone specimens. The techniques developed here can be used to obtain a complete characterization of the mechanical properties of trabecular architecture. With the development of in vivo reconstruction techniques, even in vivo measurements will be possible.


Journal of Bone and Mineral Research | 2003

Trabecular bone tissue strains in the healthy and osteoporotic human femur

B. van Rietbergen; R. Huiskes; F. Eckstein; Peter Rüegsegger

Quantitative information about bone tissue‐level loading is essential for understanding bone mechanical behavior. We made microfinite element models of a healthy and osteoporotic human femur and found that tissue‐level strains in the osteoporotic femoral head were 70% higher on average and less uniformly distributed than those in the healthy one.


Journal of Biomechanics | 2004

Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study

W. Wilson; C.C. van Donkelaar; B. van Rietbergen; Keita Ito; R. Huiskes

Osteoarthritis (OA) is a multifactorial disease, resulting in diarthrodial joint wear and eventually destruction. Swelling of cartilage, which is proportional to the amount of collagen damage, is an initial event of cartilage degeneration, so damage to the collagen fibril network is likely to be one of the earliest signs of OA cartilage degeneration. We propose that the local stresses and strains in the collagen fibrils, which cause the damage, cannot be determined dependably without taking the local arcade-like collagen-fibril structure into account. We investigate this using a poroviscoelastic fibril-reinforced FEA model. The constitutive fibril properties were determined by fitting numerical data to experimental results of unconfined compression and indentation tests on samples of bovine patellar articular cartilage. It was demonstrated that with this model the stresses and strains in the collagen fibrils can be calculated. It was also exhibited that fibrils with different orientations at the same location can be loaded differently, depending on the local architecture of the collagen network. To the best of our knowledge, the present model is the first that can account for these features. We conclude that the local stresses and strains in the articular cartilage are highly influenced by the local morphology of the collagen-fibril network.


Journal of Biomechanics | 1999

Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling

J Kerner; R. Huiskes; G.H. van Lenthe; Harrie Weinans; B. van Rietbergen; Ca Engh; Andrew A. Amis

Periprosthetic adaptive bone remodelling after total hip arthroplasty can be simulated in computer models, combining bone remodelling theory with finite element analysis. Patient specific three-dimensional finite element models of retrieved bone specimens from an earlier bone densitometry (DEXA) study were constructed and bone remodelling simulations performed. Results of the simulations were analysed both qualitatively and quantitatively. Patterns of predicted bone loss corresponded very well with the DEXA measurements on the retrievals. The amount of predicted bone loss, measured quantitatively by simulating DEXA on finite element models, was found to be inversely correlated with the initial bone mineral content. It was concluded that the same clinically observed correlation can therefore be explained by mechanically induced remodelling. This finding extends the applicability of numerical pre-clinical testing to the analysis of interaction between implant design and initial state of the bone.


Journal of Biomechanics | 1999

Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions.

B. van Rietbergen; Ralph Müller; D Ulrich; Peter Rüegsegger; R. Huiskes

A quantitative assessment of bone tissue stresses and strains is essential for the understanding of failure mechanisms associated with osteoporosis, osteoarthritis, loosening of implants and cell- mediated adaptive bone-remodeling processes. According to Wolffs trajectorial hypothesis, the trabecular architecture is such that minimal tissue stresses are paired with minimal weight. This paradigm at least suggests that, normally, stresses and strains should be distributed rather evenly over the trabecular architecture. Although bone stresses at the apparent level were determined with finite element analysis (FEA), by assuming it to be continuous, there is no data available on trabecular tissue stresses or strains of bones in situ under physiological loading conditions. The objectives of this project were to supply reasonable estimates of these quantities for the canine femur, to compare trabecular-tissue to apparent stresses, and to test Wolffs hypothesis in a quantitative sense. For that purpose, the newly developed method of large-scale micro-FEA was applied in conjunction with micro-CT structural measurements. A three-dimensional high-resolution computer reconstruction of a proximal canine femur was made using a micro-CT scanner. This was converted to a large-scale FE-model with 7.6 million elements, adequately refined to represent individual trabeculae. Using a special-purpose FE-solver, analyses were conducted for three different orthogonal hip-joint loading cases, one of which represented the stance-phase of walking. By superimposing the results, the tissue stress and strain distributions could also be calculated for other force directions. Further analyses of results were concentrated on a trabecular volume of interest (VOI) located in the center of the head. For the stance phase of walking an average tissue principal strain in the VOI of 279 strain was found, with a standard deviation of 212 microstrain. The standard deviation depended not only on the hip-force magnitude, but also on its direction. In more than 95% of the tissue volume the principal stresses and strains were in a range from zero to three times the averages, for all hip-force directions. This indicates that no single load creates even stress or strain distributions in the trabecular architecture. Nevertheless, excessive values occurred at few locations only, and the maximum tissue stress was approximately half the value reported for the tissue fatigue strength. These results thus indicate that trabecular bone tissue has a safety factor of approximately two for hip-joint loads that occur during normal activities.


Bone | 1999

Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture.

J. Kabel; B. van Rietbergen; Anders Odgaard; R. Huiskes

The hypothesis that trabecular morphology can predict the elastic properties of cancellous bone has only partly been verified and no predictive analytical model is currently available. Such models are becoming increasingly relevant as the resolution levels of three-dimensional scanning techniques approach the size of trabeculae. This study took advantage of micro-finite-element methods and tested the aforementioned hypothesis in normal cancellous bone material collected at six anatomical locations from 56 individuals. Numerical analysis was based on high-resolution three-dimensional computer reconstructions of cancellous bone specimens from which the complete elastic characteristics and trabecular morphology, represented by three different fabric measures (the mean intercept length and two volume-based ones), were calculated. Each fabric measure was analyzed individually using the tensorial relationships derived by Cowin (Mech Mater 4:137-147; 1985). Models for both stiffness and compliance entries were developed. The models based on stiffness entries could explain 93.4%-95.6% of the variance, whereas those based on compliance entries could explain 89.2%-89.4%. When using the former model, the MIL (mean intercept length measure) performed slightly better than the two volume-based measures, VO (volume orientation) and SVD (star volume distribution), with 23% less remaining variance. The high correlations found strongly support the hypothesis and increase the hope that, on the basis of information on trabecular morphology, it will be possible to obtain considerably better estimates of bone quality in vivo compared with the rough two-dimensional density measurements used today.


International Journal for Numerical Methods in Engineering | 1996

Computational strategies for iterative solutions of large fem applications employing voxel data

B. van Rietbergen; Harrie Weinans; R. Huiskes; B. J. W. Polman

SUMMARY FE-models for structural solid mechanics analyses can be readily generated from computer images via a ‘voxel conversion’ method, whereby voxels in a two- or three-dimensional computer image are directly translated to elements in a FE-model. The fact that all elements thus generated are the same creates the possibilities for fast solution algorithms that can compensate for a large number of elements. The solving methods described in this paper are based on an iterative solving algorithm in combination with a uniqueelement Element-by-Element (EBE) or with a newly developed Row-by-Row (RBR) matrix-vector multiplication strategy. With these methods it is possible to solve FE-models on the order of lo5 3-D brick elements on a workstation and on the order of lo6 elements on a Cray computer. The methods are demonstrated for the Boussinesq problem and for FE-models that represent a porous trabecular bone structure. The results show that the RBR method can be 3.2 times faster than the EBE method. It was concluded that the voxel conversion method in combination with these solving methods not only provides a powerful tool to analyse structures that can not be analysed in another way, but also that this approach can be competitive with traditional meshing and solving techniques.


Bone | 1999

Connectivity and the elastic properties of cancellous bone

J. Kabel; Anders Odgaard; B. van Rietbergen; R. Huiskes

This study addresses the possible significance of trabecular connectivity for the mechanical quality of cancellous bone. A total of 141 cubic trabecular bone specimens collected from autopsy material from 56 individuals without any known bone or metastatic diseases were used. Age variation was in the range of 14-91 years and a wide range of trabecular architecture was found. Each specimen was three-dimensionally reconstructed with a voxel size of either 20 or 25 microm. Using the detailed three-dimensional reconstructions as input for microstructural finite-element models, the complete elastic properties of the trabecular architecture were obtained and maximum and mean stiffness could be calculated. Volume fraction and true three-dimensional architectural measurements of connectivity density and surface density were determined. Connectivity density was determined in an unbiased manner by the Euler number, which is a topological property. Using multiple regression analysis it was found that volume fraction explained by far the greatest part (84%-94%) of the variation in both mean and maximum stiffness. When connectivity density and surface density were included, the correlations increased marginally to 89%-95%. Noticeably negative regression coefficients were found for connectivity density. The results suggest that, in normal cancellous bone, the connectivity density has very limited value for assessment of elastic properties by morphological variables, but if a relation exists then stiffness decreases with increasing connectivity.


Journal of Biomechanics | 2003

Pathways of load-induced cartilage damage causing cartilage degeneration in the knee after meniscectomy

W. Wilson; B. van Rietbergen; C.C. van Donkelaar; R. Huiskes

Results of both clinical and animal studies show that meniscectomy often leads to osteoarthritic degenerative changes in articular cartilage. It is generally assumed that this process of cartilage degeneration is due to changes in mechanical loading after meniscectomy. It is, however, not known why and where this cartilage degeneration starts. Load induced cartilage damage is characterized as either type (1)--damage without disruption of the underlying bone or calcified cartilage layer--or type (2), subchondral fracture with or without damage to the overlying cartilage. We asked the question whether cartilage degeneration after meniscectomy is likely to be initiated by type (1) and/or type (2) cartilage damage. To investigate that we applied an axisymmetric biphasic finite element analysis model of the knee joint. In this model the articular cartilage layers of the tibial and the femoral condyles, the meniscus and the bone underlying the articular cartilage of the tibia plateau were included. The model was validated with data from clinical studies, in which the effects of meniscectomy on contact areas and pressures were measured. It was found that both the maximal values and the distributions of the shear stress in the articular cartilage changed after meniscectomy, and that these changes could lead to both type (1) and type (2) cartilage damage. Hence it likely that the cartilage degeneration seen after meniscectomy is initiated by both type (1) and type (2) cartilage damage.

Collaboration


Dive into the B. van Rietbergen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keita Ito

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

J. van den Bergh

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

A. Scharmga

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

A. van Tubergen

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

M. Peters

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

D. Loeffen

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Harrie Weinans

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jacobus J. Arts

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge