Babak Ehteshami Bejnordi
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Babak Ehteshami Bejnordi.
Medical Image Analysis | 2017
Geert J. S. Litjens; Thijs Kooi; Babak Ehteshami Bejnordi; Arnaud Arindra Adiyoso Setio; Francesco Ciompi; Mohsen Ghafoorian; Jeroen van der Laak; Bram van Ginneken; Clara I. Sánchez
Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.
JAMA | 2017
Babak Ehteshami Bejnordi; Mitko Veta; Paul J. van Diest; Bram van Ginneken; Nico Karssemeijer; Geert J. S. Litjens; Jeroen van der Laak; Meyke Hermsen; Quirine F. Manson; Maschenka Balkenhol; Oscar Geessink; Nikolaos Stathonikos; Marcory C R F van Dijk; Peter Bult; Francisco Beca; Andrew H. Beck; Dayong Wang; Aditya Khosla; Rishab Gargeya; Humayun Irshad; Aoxiao Zhong; Qi Dou; Quanzheng Li; Hao Chen; Huang Jing Lin; Pheng-Ann Heng; Christian Haß; Elia Bruni; Quincy Wong; Ugur Halici
Importance Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Objective Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting. Design, Setting, and Participants Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Exposures Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. Main Outcomes and Measures The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. Results The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC). Conclusions and Relevance In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.
IEEE Transactions on Medical Imaging | 2016
Babak Ehteshami Bejnordi; Geert J. S. Litjens; Nadya Timofeeva; Irene Otte-Höller; André Homeyer; Nico Karssemeijer; Jeroen van der Laak
Variations in the color and intensity of hematoxylin and eosin (H&E) stained histological slides can potentially hamper the effectiveness of quantitative image analysis. This paper presents a fully automated algorithm for standardization of whole-slide histopathological images to reduce the effect of these variations. The proposed algorithm, called whole-slide image color standardizer (WSICS), utilizes color and spatial information to classify the image pixels into different stain components. The chromatic and density distributions for each of the stain components in the hue-saturation-density color model are aligned to match the corresponding distributions from a template whole-slide image (WSI). The performance of the WSICS algorithm was evaluated on two datasets. The first originated from 125 H&E stained WSIs of lymph nodes, sampled from 3 patients, and stained in 5 different laboratories on different days of the week. The second comprised 30 H&E stained WSIs of rat liver sections. The result of qualitative and quantitative evaluations using the first dataset demonstrate that the WSICS algorithm outperforms competing methods in terms of achieving color constancy. The WSICS algorithm consistently yields the smallest standard deviation and coefficient of variation of the normalized median intensity measure. Using the second dataset, we evaluated the impact of our algorithm on the performance of an already published necrosis quantification system. The performance of this system was significantly improved by utilizing the WSICS algorithm. The results of the empirical evaluations collectively demonstrate the potential contribution of the proposed standardization algorithm to improved diagnostic accuracy and consistency in computer-aided diagnosis for histopathology data.
IEEE Transactions on Medical Imaging | 2016
Babak Ehteshami Bejnordi; Maschenka Balkenhol; Geert J. S. Litjens; Roland Holland; Peter Bult; Nico Karssemeijer; Jeroen van der Laak
This paper presents and evaluates a fully automatic method for detection of ductal carcinoma in situ (DCIS) in digitized hematoxylin and eosin (H&E) stained histopathological slides of breast tissue. The proposed method applies multi-scale superpixel classification to detect epithelial regions in whole-slide images (WSIs). Subsequently, spatial clustering is utilized to delineate regions representing meaningful structures within the tissue such as ducts and lobules. A region-based classifier employing a large set of features including statistical and structural texture features and architectural features is then trained to discriminate between DCIS and benign/normal structures. The system is evaluated on two datasets containing a total of 205 WSIs of breast tissue. Evaluation was conducted both on the slide and the lesion level using FROC analysis. The results show that to detect at least one true positive in every DCIS containing slide, the system finds 2.6 false positives per WSI. The results of the per-lesion evaluation show that it is possible to detect 80% and 83% of the DCIS lesions in an abnormal slide, at an average of 2.0 and 3.0 false positives per WSI, respectively. Collectively, the result of the experiments demonstrate the efficacy and accuracy of the proposed method as well as its potential for application in routine pathological diagnostics. To the best of our knowledge, this is the first DCIS detection algorithm working fully automatically on WSIs.
international symposium on biomedical imaging | 2017
Francesco Ciompi; Oscar Geessink; Babak Ehteshami Bejnordi; Gabriel Silva de Souza; Alexi Baidoshvili; Geert J. S. Litjens; Bram van Ginneken; Iris D. Nagtegaal; Jeroen van der Laak
The development of reliable imaging biomarkers for the analysis of colorectal cancer (CRC) in hematoxylin and eosin (H&E) stained histopathology images requires an accurate and reproducible classification of the main tissue components in the image. In this paper, we propose a system for CRC tissue classification based on convolutional networks (ConvNets). We investigate the importance of stain normalization in tissue classification of CRC tissue samples in H&E-stained images. Furthermore, we report the performance of ConvNets on a cohort of rectal cancer samples and on an independent publicly available dataset of colorectal H&E images.
Journal of medical imaging | 2017
Babak Ehteshami Bejnordi; Guido C. A. Zuidhof; Maschenka Balkenhol; Meyke Hermsen; Peter Bult; Bram van Ginneken; Nico Karssemeijer; Geert J. S. Litjens; Jeroen van der Laak
Abstract. Currently, histopathological tissue examination by a pathologist represents the gold standard for breast lesion diagnostics. Automated classification of histopathological whole-slide images (WSIs) is challenging owing to the wide range of appearances of benign lesions and the visual similarity of ductal carcinoma in-situ (DCIS) to invasive lesions at the cellular level. Consequently, analysis of tissue at high resolutions with a large contextual area is necessary. We present context-aware stacked convolutional neural networks (CNN) for classification of breast WSIs into normal/benign, DCIS, and invasive ductal carcinoma (IDC). We first train a CNN using high pixel resolution to capture cellular level information. The feature responses generated by this model are then fed as input to a second CNN, stacked on top of the first. Training of this stacked architecture with large input patches enables learning of fine-grained (cellular) details and global tissue structures. Our system is trained and evaluated on a dataset containing 221 WSIs of hematoxylin and eosin stained breast tissue specimens. The system achieves an AUC of 0.962 for the binary classification of nonmalignant and malignant slides and obtains a three-class accuracy of 81.3% for classification of WSIs into normal/benign, DCIS, and IDC, demonstrating its potential for routine diagnostics.
Proceedings of SPIE | 2015
Babak Ehteshami Bejnordi; Geert J. S. Litjens; Meyke Hermsen; Nico Karssemeijer; Jeroen van der Laak
This paper presents a new algorithm for automatic detection of regions of interest in whole slide histopathological images. The proposed algorithm generates and classifies superpixels at multiple resolutions to detect regions of interest. The algorithm emulates the way the pathologist examines the whole slide histopathology image by processing the image at low magnifications and performing more sophisticated analysis only on areas requiring more detailed information. However, instead of the traditional usage of fixed sized rectangular patches for the identification of relevant areas, we use superpixels as the visual primitives to detect regions of interest. Rectangular patches can span multiple distinct structures, thus degrade the classification performance. The proposed multi-scale superpixel classification approach yields superior performance for the identification of the regions of interest. For the evaluation, a set of 10 whole slide histopathology images of breast tissue were used. Empirical evaluation of the performance of our proposed algorithm relative to expert manual annotations shows that the algorithm achieves an area under the Receiver operating characteristic (ROC) curve of 0.958, demonstrating its efficacy for the detection of regions of interest.
Proceedings of SPIE | 2014
Babak Ehteshami Bejnordi; Nadya Timofeeva; Irene Otte-Höller; Nico Karssemeijer; Jeroen van der Laak
This paper presents data on the sources of variation of the widely used hematoxylin and eosin (H&E) histological staining, as well as a new algorithm to reduce these variations in digitally scanned tissue sections. Experimental results demonstrate that staining protocols in different laboratories and staining on different days of the week are the major factors causing color variations in histopathological images. The proposed algorithm for standardizing histology slides is based on an initial clustering of the image into two tissue components having different absorption characteristics for different dyes. The color distribution for each tissue component is standardized by aligning the 2D histogram of color distribution in the hue-saturation-density (HSD) model. Qualitative evaluation of the proposed standardization algorithm shows that color constancy of the standardized images is improved. Quantitative evaluation demonstrates that the algorithm outperforms competing methods. In conclusion, the paper demonstrates that staining variations, which may potentially hamper usefulness of computer assisted analysis of histopathological images, can be reduced considerably by applying the proposed algorithm.
international symposium on biomedical imaging | 2017
Babak Ehteshami Bejnordi; Jimmy Lin; Ben Glass; Maeve Mullooly; Gretchen L. Gierach; Mark E. Sherman; Nico Karssemeijer; Jeroen van der Laak; Andrew H. Beck
Diagnosis of breast carcinomas has so far been limited to the morphological interpretation of epithelial cells and the assessment of epithelial tissue architecture. Consequently, most of the automated systems have focused on characterizing the epithelial regions of the breast to detect cancer. In this paper, we propose a system for classification of hematoxylin and eosin (H&E) stained breast specimens based on convolutional neural networks that primarily targets the assessment of tumor-associated stroma to diagnose breast cancer patients. We evaluate the performance of our proposed system using a large cohort containing 646 breast tissue biopsies. Our evaluations show that the proposed system achieves an area under ROC of 0.92, demonstrating the discriminative power of previously neglected tumor associated stroma as a diagnostic biomarker.
Medical Physics | 2017
Thomy Mertzanidou; John H. Hipwell; Sara Reis; David J. Hawkes; Babak Ehteshami Bejnordi; Mehmet Ufuk Dalmış; Suzan Vreemann; Bram Platel; Jeroen van der Laak; Nico Karssemeijer; Meyke Hermsen; Peter Bult; Ritse M. Mann
Purpose: In breast imaging, radiological in vivo images, such as x‐ray mammography and magnetic resonance imaging (MRI), are used for tumor detection, diagnosis, and size determination. After excision, the specimen is typically sliced into slabs and a small subset is sampled. Histopathological imaging of the stained samples is used as the gold standard for characterization of the tumor microenvironment. A 3D volume reconstruction of the whole specimen from the 2D slabs could facilitate bridging the gap between histology and in vivo radiological imaging. This task is challenging, however, due to the large deformation that the breast tissue undergoes after surgery and the significant undersampling of the specimen obtained in histology. In this work, we present a method to reconstruct a coherent 3D volume from 2D digital radiographs of the specimen slabs. Methods: To reconstruct a 3D breast specimen volume, we propose the use of multiple target neighboring slices, when deforming each 2D slab radiograph in the volume, rather than performing pairwise registrations. The algorithm combines neighborhood slice information with free‐form deformations, which enables a flexible, nonlinear deformation to be computed subject to the constraint that a coherent 3D volume is obtained. The neighborhood information provides adequate constraints, without the need for any additional regularization terms. Results: The volume reconstruction algorithm is validated on clinical mastectomy samples using a quantitative assessment of the volume reconstruction smoothness and a comparison with a whole specimen 3D image acquired for validation before slicing. Additionally, a target registration error of 5 mm (comparable to the specimen slab thickness of 4 mm) was obtained for five cases. The error was computed using manual annotations from four observers as gold standard, with interobserver variability of 3.4 mm. Finally, we illustrate how the reconstructed volumes can be used to map histology images to a 3D specimen image of the whole sample (either MRI or CT). Conclusions: Qualitative and quantitative assessment has illustrated the benefit of using our proposed methodology to reconstruct a coherent specimen volume from serial slab radiographs. To our knowledge, this is the first method that has been applied to clinical breast cases, with the goal of reconstructing a whole specimen sample. The algorithm can be used as part of the pipeline of mapping histology images to ex vivo and ultimately in vivo radiological images of the breast.