Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Babak Nami is active.

Publication


Featured researches published by Babak Nami.


Experimental and Toxicologic Pathology | 2016

Tunicamycin-induced endoplasmic reticulum stress reduces in vitro subpopulation and invasion of CD44+/CD24- phenotype breast cancer stem cells

Babak Nami; Huseyin Donmez; Nadir Koçak

Tunicamycin is an inhibitor of glycosylation that disturbs protein folding machinery in eukaryotic cells. Tunicamycin causes accumulation of unfolded proteins in cell endoplasmic reticulum (ER) and induces ER stress. ER stress is an essential mechanism for cellular homeostasis has role in cell death via reprogramming of protein processing, regulation of autophagy and apoptosis. In this study we show effect of tunicamycin on subpopulation and invasion of CD44+/CD24- MCF7 breast cancer stem cells. CD44+/CD24- cells were isolated from MCF7 cell line by fluorescence activated cell sorting (FACS) and treated with tunicamycin. ER stress was monitored by evaluation of X-box binding protein 1(XBP-1) mRNA splicing, cleaved activating transcription factor 6 (ATF6) nuclear translocation and CCAAT/enhancer-binding protein homologous protein (CHOP) expression. CD44+/CD24- subpopulation was analyzed using flow cytometry. Invasion was investigated by scratch assay, trypan blue staining, 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) proliferation and in vitro migration assays. Increased level of spliced XBP-1, ATF6 nuclear translocation and CHOP protein expression were detected in CD44+/CD24- and original MCF7 cells treated with tunicamycin. Also, a significant decline in CD44+/CD24- cell subpopulation was determined in the cells treated with tunicamycin. The results also showed inhibited invasion, increased cell death, suppressed proliferation and reduced migration in the CD44+/CD24- and CD44+/CD24- rich MCF7 cell culture, under effect of tunicamycin. Our results indicate that CD44+/CD24- phenotype MCF7 cells are susceptible to tunicamycin. The results showed that tunicamycin-induced ER stress suppresses CD44+/CD24- phenotype cell subpopulation and in vitro invasion and accelerates tumorosphore formation. These results suggest that tunicamycin-induced ER stress inhibits CD44+/CD24- phenotype MCF7 breast cancer stem cells. We conclude that using ER-targeting chemicals like tunicamycin is an interesting approach to target breast cancer stem cells inside tumor.


BioImpacts : BI | 2016

Overexpression of molecular chaperons GRP78 and GRP94 in CD44hi/CD24lo breast cancer stem cells

Babak Nami; Armin Ghasemi-Dizgah; Akbar Vaseghi

Introduction: Breast cancer stem cell with CD44hi/CD24lo phonotype is described having stem cell properties and represented as the main driving factor in breast cancer initiation, growth, metastasis and low response to anti-cancer agents. Glucoseregulated proteins (GRPs) are heat shock protein family chaperons that are charged with regulation of protein machinery and modulation of endoplasmic reticulum homeostasis whose important roles in stem cell development and invasion of various cancers have been demonstrated. Here, we investigated the expression levels of GRP78 and GRP94 in CD44hi/CD24lo phenotype breast cancer stem cells (BCSCs). Methods: MCF7, T-47D and MDA-MB-231 breast cancer cell lines were used. CD44hi/CD24lo phenotype cell population were analyzed and sorted by fluorescence-activated cell sorting (FACS). Transcriptional and translational expression of GRP78 and GRP94 were investigated by western blotting and quantitative real time PCR. Results: Results showed different proportion of CD44hi/CD24lo phenotype cell population in their original bulk cells. The ranking of the cell lines in terms of CD44hi/CD24lo phenotype cell population was as MCF7<T-47D<MDA-MB-231. Our results also indicated that CD44hi/CD24lo phenotype cells exhibited higher mRNA and protein expression level of GRP78 and GRP94 compared to their original bulk cells. Conclusion: Our results show a relationship between overexpression of GRP78 and GRP94 and exhibiting CD44hi/CD24lo phenotype in breast cancer cells. We conclude that upregulation of GRPs may be an important factor in the emergence of CD44hi/CD24lo phenotype BCSCs features.


Human & Experimental Toxicology | 2015

Titanium dioxide nanoparticles induce cytotoxicity and reduce mitotic index in human amniotic fluid-derived cells

Zb Bulut; A Ateş; Babak Nami; Nadir Koçak; B Yıldız

Titanium dioxide (TiO2) nanoparticles (NPs) are commonly used materials present in many consumables for which most people are exposed to. The biological hazards of the NPs on human health have been demonstrated previously. In this study, we aimed to assess the cytotoxicity potency of TiO2 NPs on the primary human amniotic fluid cells. The cells derived from amniotic fluid were treated with different dosages of TiO2 NPs for some periods. Cell adhesion status was assessed using a light microscopic observation. Cell proliferation and cell death rates were determined using trypan blue staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Also, mitotic index was determined using fluorescence in situ hybridization with chromosome 8 centromer-specific DNA probe. Disrupted cell adhesion, decreased proliferation, and increased mortality rates were detected in the cells that were treated with TiO2 NPs depending on the dosage (p < 0.001). Also, reduced mitotic index was determined in the cells depending on the time and TiO2 dosage when compared with the controls (p < 0.0001). These results showed that TiO2 NPs have high cytotoxicity for amniotic fluid-derived cells. Therefore, different products containing TiO2 NPs should be used with care, especially for pregnant women.


Cancers | 2017

HER2 in Breast Cancer Stemness: A Negative Feedback Loop towards Trastuzumab Resistance

Babak Nami; Zhixiang Wang

HER2 receptor tyrosine kinase that is overexpressed in approximately 20% of all breast cancers (BCs) is a poor prognosis factor and a precious target for BC therapy. Trastuzumab is approved by FDA to specifically target HER2 for treating HER2+ BC. However, about 60% of patients with HER2+ breast tumor develop de novo resistance to trastuzumab, partially due to the loss of expression of HER2 extracellular domain on their tumor cells. This is due to shedding/cleavage of HER2 by metalloproteinases (ADAMs and MMPs). HER2 shedding results in the accumulation of intracellular carboxyl-terminal HER2 (p95HER2), which is a common phenomenon in trastuzumab-resistant tumors and is suggested as a predictive marker for trastuzumab resistance. Up-regulation of the metalloproteinases is a poor prognosis factor and is commonly seen in mesenchymal-like cancer stem cells that are risen during epithelial to mesenchymal transition (EMT) of tumor cells. HER2 cleavage during EMT can explain why secondary metastatic tumors with high percentage of mesenchymal-like cancer stem cells are mostly resistant to trastuzumab but still sensitive to lapatinib. Importantly, many studies report HER2 interaction with oncogenic/stemness signaling pathways including TGF-β/Smad, Wnt/β-catenin, Notch, JAK/STAT and Hedgehog. HER2 overexpression promotes EMT and the emergence of cancer stem cell properties in BC. Increased expression and activation of metalloproteinases during EMT leads to proteolytic cleavage and shedding of HER2 receptor, which downregulates HER2 extracellular domain and eventually increases trastuzumab resistance. Here, we review the hypothesis that a negative feedback loop between HER2 and stemness signaling drives resistance of BC to trastuzumab.


Andrologia | 2015

Is methylenetetrahydrofolate reductase (MTHFR) gene A1298C polymorphism related with varicocele risk

V. B. Ucar; Babak Nami; H. Acar; M. Kılınç

Varicocele is one of the main reasons for male infertility the exact aetiology of which remains unclear. Methylenetetrahydrofolate reductase (MTHFR) is important for DNA synthesis and methylation, which has a key role during spermatogenesis. Numerous literature suggests that the MTHFR polymorphism may be genetic risk factors for male infertility. In this study, we evaluated C677T and A1298C MTHFR gene polymorphism frequency in patients with varicocele and normal men. A total of 107 varicocele patients and 109 fertile healthy individuals were included. Genotyping of the MTHFR gene in C677T and A1298C base pairs carried out by using real‐time PCR technique and afterwards, the statistical analysis accomplished. There is a statistical difference for the frequency of 1298AA genotype in patients with varicocele compared with normal controls (P = 0.0051, OR = 2.2750). Instead, subsequently, 1298/A allel frequency in patient group was significantly higher in comparison with control group (P = 0.0174). According to our results, 1298AA genotype in MTHFR gene raises the risk of varicocele approximately 2.3 times more compared with men carrying other genotypes. The results show that genetic factors have an important role in the molecular basis of varicocele.


Cancers | 2018

Genetics and Expression Profile of the Tubulin Gene Superfamily in Breast Cancer Subtypes and Its Relation to Taxane Resistance

Babak Nami; Zhixiang Wang

Taxanes are a class of chemotherapeutic agents that inhibit cell division by disrupting the mitotic spindle through the stabilization of microtubules. Most breast cancer (BC) tumors show resistance against taxanes partially due to alterations in tubulin genes. In this project we investigated tubulin isoforms in BC to explore any correlation between tubulin alterations and taxane resistance. Genetic alteration and expression profiling of 28 tubulin isoforms in 6714 BC tumor samples from 4205 BC cases were analyzed. Protein-protein, drug-protein and alterations neighbor genes in tubulin pathways were examined in the tumor samples. To study correlation between promoter activity and expression of the tubulin isoforms in BC, we analyzed the ChIP-seq enrichment of active promoter histone mark H3K4me3 and mRNA expression profile of MCF-7, ZR-75-30, SKBR-3 and MDA-MB-231 cell lines. Potential correlation between tubulin alterations and taxane resistance, were investigated by studying the expression profile of taxane-sensitive and resistant BC tumors also the MDA-MB-231 cells acquired resistance to paclitaxel. All genomic data were obtained from public databases. Results showed that TUBD1 and TUBB3 were the most frequently amplified and deleted tubulin genes in the BC tumors respectively. The interaction analysis showed physical interactions of α-, β- and γ-tubulin isoforms with each other. The most of FDA-approved tubulin inhibitor drugs including taxanes target only β-tubulins. The analysis also revealed sex tubulin-interacting neighbor proteins including ENCCT3, NEK2, PFDN2, PTP4A3, SDCCAG8 and TBCE which were altered in at least 20% of the tumors. Three of them are tubulin-specific chaperons responsible for tubulin protein folding. Expression of tubulin genes in BC cell lines were correlated with H3K4me3 enrichment on their promoter chromatin. Analyzing expression profile of BC tumors and tumor-adjacent normal breast tissues showed upregulation of TUBA1A, TUBA1C, TUBB and TUBB3 and downregulation of TUBB2A, TUBB2B, TUBB6, TUBB7P pseudogene, and TUBGCP2 in the tumor tissues compared to the normal breast tissues. Analyzing taxane-sensitive versus taxane-resistant tumors revealed that expression of TUBB3 and TUBB6 was significantly downregulated in the taxane-resistant tumors. Our results suggest that downregulation of tumor βIII- and βV-tubulins is correlated with taxane resistance in BC. Based on our results, we conclude that aberrant protein folding of tubulins due to mutation and/or dysfunction of tubulin-specific chaperons may be potential mechanisms of taxane resistance. Thus, we propose studying the molecular pathology of tubulin mutations and folding in BC and their impacts on taxane resistance.


Cancers | 2018

Mechanisms Underlying the Action and Synergism of Trastuzumab and Pertuzumab in Targeting HER2-Positive Breast Cancer

Babak Nami; Hamid Maadi; Zhixiang Wang

Human epidermal growth factor receptor (HER) 2 (HER2) is overexpressed in 20–30% of breast cancers. HER2 is a preferred target for treating HER2-positive breast cancer. Trastuzumab and pertuzumab are two HER2-targeted monoclonal antibodies approved by the Food and Drug Administration (FDA) to use as adjuvant therapy in combination with docetaxel to treat metastatic HER2-positive breast cancer. Adding the monoclonal antibodies to treatment regimen has changed the paradigm for treatment of HER2-positive breast cancer. Despite improving outcomes, the percentage of the patients who benefit from the treatment is still low. Continued research and development of novel agents and strategies of drug combinations is needed. A thorough understanding of the molecular mechanisms underlying the action and synergism of trastuzumab and pertuzumab is essential for moving forward to achieve high efficacy in treating HER2-positive breast cancer. This review examined and analyzed findings and hypotheses regarding the action and synergism of trastuzumab and pertuzumab and proposed a model of synergism based on available information.


Archive | 2017

Application of Immunofluorescence Staining to Study ErbB Family of Receptor Tyrosine Kinases

Babak Nami; Zhixiang Wang

Immunofluorescence staining is an effective method for visualizing ErbB family of receptor tyrosine kinases and to monitor their expression, phosphorylation, and localization in individual cells. However, immunofluorescence staining for membrane proteins is required preserving integrity of cell membrane intact by protecting the cells from organic solvents. Permeabilization of cells may increase nonspecific intracellular background signal as an inevitable result. This chapter describes procedures for the application of indirect immunofluorescence staining for ErbB receptors in adherent and suspended cells as well as in paraffin-embedded tissue sections.


Archive | 2017

Dimerization Assessment of Epithelial Growth Factor Family of Receptor Tyrosine Kinases by Using Cross-Linking Reagent

Hamid Maadi; Babak Nami; Zhixiang Wang

Dimerization of the epithelial growth factor (EGF) family of receptor tyrosine kinases is a crucial step for activation of these receptors. Different chemicals such as BS3 and DSS have been introduced to covalently bind the interacting receptors and fix the dimers. Unique properties of BS3 including higher water solubility and membrane impermeability make it suitable for assessing receptor-receptor interactions in live cells. In this protocol, we aim to explain a method to evaluate the dimerization of EGF receptors family using BS3 as a cross-linker reagent.


Acta Medica International | 2017

Tarantula cubensis venom (Theranekron) selectively destroys human cancer cells via activating caspase-3-mediated apoptosis

Armin Ghasemi-Dizgah; Babak Nami; Nour Amirmozafari

Background: Tarantula cubensis venom (Theranekron®) is used as a homeopathic medicine which has shown anti-tumor effects in veterinary medicine. The aim of this study was to assess effect of Tarantula cubensis venom on apoptotic cell death of human cancer cell lines. Methods: HEK293, MCF7 and HN5 cell lines were used. The cells were treated with different concentrations of alcoholic extract of Tarantula cubensis (Theranekron®) for different periods of time. Cell morphology was studied by light microscopic observation. Cell proliferation was evaluated by MTT assay and death rate was assessed applying trypan blue staining. Apoptosis was assessed by DNA fragmentation, cleaved caspase-3 protein western blotting and ELISA caspase-3 activity assays. Results: Tarantula cubensis venom ruined cell adhesion, reduced cell proliferation, increased cell death rates and caused DNA fragmentation in human cells. An increased caspase-3 cleavage and hyper-activation of caspase-3 was detected in the cells treated with the venom. Results also showed a significantly higher toxicity and apoptosis levels in cancer cell lines MCF7 and HN5 compared with non-cancerous HEK293 cells. Conclusion: We conclude that Tarantula cubensis venom is selectively toxic for human cancer cells via inducing caspase-3- mediated apoptosis.

Collaboration


Dive into the Babak Nami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gina Li

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A Ateş

Turgut Özal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge