Badreddine Kriem
Nancy-Université
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Badreddine Kriem.
Neurobiology of Disease | 2006
Catherine Malaplate-Armand; Sabrina Florent-Béchard; Ihsen Youssef; Violette Koziel; Isabelle Sponne; Badreddine Kriem; Brigitte Leininger-Muller; Jean-Luc Olivier; Thierry Oster; Thierry Pillot
Recent data have revealed that soluble oligomeric amyloid-beta peptide (Abeta) may be the proximate effectors of neuronal injuries and death in Alzheimers disease (AD) by unknown mechanisms. Consistently, we recently demonstrated the critical role of a redox-sensitive cytosolic calcium-dependent phospholipase A2 (cPLA2)-arachidonic acid (AA) pathway in Abeta oligomer-induced cell death. According to the involvement of oxidative stress and polyunsaturated fatty acids like AA in the regulation of sphingomyelinase (SMase) activity, the present study underlines the role of SMases in soluble Abeta-induced apoptosis. Soluble Abeta oligomers induced the activation of both neutral and acidic SMases, as demonstrated by the direct measurement of their enzymatic activities, by the inhibitory effects of both specific neutral and acidic SMase inhibitors, and by gene knockdown using antisense oligonucleotides. Furthermore, soluble Abeta-mediated activation of SMases and subsequent cell death were found to be inhibited by antioxidant molecules and a cPLA2-specific inhibitor or antisense oligonucleotide. We also demonstrate that sphingosine-1-phosphate is a potent neuroprotective factor against soluble Abeta oligomer-induced cell death and apoptosis by inhibiting soluble Abeta-induced activation of acidic sphingomyelinase. These results suggest that Abeta oligomers induce neuronal death by activating neutral and acidic SMases in a redox-sensitive cPLA2-AA pathway.
Journal of Neurochemistry | 2006
Sabrina Florent; Catherine Malaplate-Armand; Ihsen Youssef; Badreddine Kriem; Violette Koziel; Marie-Christine Escanyé; Alexandre Fifre; Isabelle Sponne; Brigitte Leininger-Muller; Jean-Luc Olivier; Thierry Pillot; Thierry Oster
A growing body of evidence supports the notion that soluble oligomers of amyloid‐β (Aβ) peptide interact with the neuronal plasma membrane, leading to cell injury and inducing death‐signalling pathways that could account for the increased neurodegeneration occurring in Alzheimers disease (AD). Docosahexaenoic acid (DHA, C22:6, n‐3) is an essential polyunsaturated fatty acid in the CNS and has been shown in several epidemiological and in vivo studies to have protective effects against AD and cognitive alterations. However, the molecular mechanisms involved remain unknown. We hypothesized that DHA enrichment of plasma membranes could protect neurones from apoptosis induced by soluble Aβ oligomers. DHA pre‐treatment was observed to significantly increase neuronal survival upon Aβ treatment by preventing cytoskeleton perturbations, caspase activation and apoptosis, as well as by promoting extracellular signal‐related kinase (ERK)‐related survival pathways. These data suggest that DHA enrichment probably induces changes in neuronal membrane properties with functional outcomes, thereby increasing protection from soluble Aβ oligomers. Such neuroprotective effects could be of major interest in the prevention of AD and other neurodegenerative diseases.
Journal of Biological Chemistry | 2006
Alexandre Fifre; Isabelle Sponne; Violette Koziel; Badreddine Kriem; Frances T. Yen Potin; Bernard Bihain; Jean-Luc Olivier; Thierry Oster; Thierry Pillot
A growing body of evidence supports the notion that soluble oligomeric forms of the amyloid β-peptide (Aβ) may be the proximate effectors of neuronal injuries and death in the early stages of Alzheimer disease. However, the molecular mechanisms associated with neuronal apoptosis induced by soluble Aβ remain to be elucidated. We recently demonstrated the involvement of an early reactive oxygen species-dependent perturbation of the microtubule network (Sponne, I., Fifre, A., Drouet, B., Klein, C., Koziel, V., Pincon-Raymond, M., Olivier, J.-L., Chambaz, J., and Pillot, T. (2003) J. Biol. Chem. 278, 3437–3445). Because microtubule-associated proteins (MAPs) are responsible for the polymerization, stabilization, and dynamics of the microtubule network, we investigated whether MAPs might represent the intracellular targets that would enable us to explain the microtubule perturbation involved in soluble Aβ-mediated neuronal apoptosis. The data presented here show that soluble Aβ oligomers induce a time-dependent degradation of MAP1A, MAP1B, and MAP2 involving a perturbation of Ca2+ homeostasis with subsequent calpain activation that, on its own, is sufficient to induce the proteolysis of isoforms MAP2a, MAP2b, and MAP2c. In contrast, MAP1A and MAP1B sequential proteolysis results from the Aβ-mediated activation of caspase-3 and calpain. The prevention of MAP1A, MAP1B, and MAP2 proteolysis by antioxidants highlights the early reactive oxygen species generation in the perturbation of the microtubule network induced by soluble Aβ. These data clearly demonstrate the impact of cytoskeletal perturbations on soluble Aβ-mediated cell death and support the notion of microtubule-stabilizing agents as effective Alzheimer disease drugs.
The Journal of Neuroscience | 2010
Pierre Garcia; Ihsen Youssef; Jo K. Utvik; Sabrina Florent-Béchard; Vanassa Barthélémy; Catherine Malaplate-Armand; Badreddine Kriem; Christophe Stenger; Violette Koziel; Jean-Luc Olivier; Marie-Christine Escanyé; Marine Hanse; Ahmad Allouche; Cédric Desbène; Frances T. Yen; Rolf Bjerkvig; Thierry Oster; Simone P. Niclou; Thierry Pillot
The development of novel therapeutic strategies for Alzheimers disease (AD) represents one of the biggest unmet medical needs today. Application of neurotrophic factors able to modulate neuronal survival and synaptic connectivity is a promising therapeutic approach for AD. We aimed to determine whether the loco-regional delivery of ciliary neurotrophic factor (CNTF) could prevent amyloid-β (Aβ) oligomer-induced synaptic damages and associated cognitive impairments that typify AD. To ensure long-term administration of CNTF in the brain, we used recombinant cells secreting CNTF encapsulated in alginate polymers. The implantation of these bioreactors in the brain of Aβ oligomer-infused mice led to a continuous secretion of recombinant CNTF and was associated with the robust improvement of cognitive performances. Most importantly, CNTF led to full recovery of cognitive functions associated with the stabilization of synaptic protein levels in the Tg2576 AD mouse model. In vitro as well as in vivo, CNTF activated a Janus kinase/signal transducer and activator of transcription-mediated survival pathway that prevented synaptic and neuronal degeneration. These preclinical studies suggest that CNTF and/or CNTF receptor-associated pathways may have AD-modifying activity through protection against progressive Aβ-related memory deficits. Our data also encourage additional exploration of ex vivo gene transfer for the prevention and/or treatment of AD.
Neurobiology of Aging | 2008
Ihsen Youssef; Sabrina Florent-Béchard; Catherine Malaplate-Armand; Violette Koziel; Bernard Bihain; Jean-Luc Olivier; Brigitte Leininger-Muller; Badreddine Kriem; Thierry Oster; Thierry Pillot
N-terminal-truncated forms of amyloid-beta (A beta) peptide have been recently suggested to play a pivotal role early in Alzheimers disease (AD). Among them, A beta 3(pE)-42 peptide, starting with pyroglutamyl at residue Glu-3, is considered as the predominant A beta species in AD plaques and pre-amyloid lesions. Its abundance is reported to be directly proportional to the severity of the clinical phenotype. The present study investigates the effects of soluble oligomeric A beta 3(pE)-42 after intracerebroventricular injection on mice learning ability and the molecular mechanisms of its in vitro neurotoxicity. Mice injected with soluble A beta 3(pE)-42 or A beta(l-42) displayed impaired spatial working memory and delayed memory acquisition in Y-maze and Morris water maze tests, while those injected with soluble A beta(42-1) showed no effect. These cognitive alterations were associated with free radical overproduction in the hippocampus and olfactory bulbs, but not in the cerebral cortex or cerebellum. In vitro, A beta 3(pE)-42 oligomers induced a redox-sensitive neuronal apoptosis involving caspase activation and an arachidonic acid-dependent pro-inflammatory pathway. These data suggest that A beta 3(pE)-42 could mediate the neurodegenerative process and subsequent cognitive alteration occurring in preclinical AD stages.
Biochimie | 2009
Sabrina Florent-Béchard; Cédric Desbène; Pierre Garcia; Ahmad Allouche; Ihsen Youssef; Marie-Christine Escanyé; Violette Koziel; Marine Hanse; Catherine Malaplate-Armand; Christophe Stenger; Badreddine Kriem; Frances Yen-Potin; Jean Luc Olivier; Thierry Pillot; Thierry Oster
In the absence of efficient diagnostic and therapeutic tools, Alzheimers disease (AD) is a major public health concern due to longer life expectancy in the Western countries. Although the precise cause of AD is still unknown, soluble beta-amyloid (Abeta) oligomers are considered the proximate effectors of the synaptic injury and neuronal death occurring in the early stages of AD. Abeta oligomers may directly interact with the synaptic membrane, leading to impairment of synaptic functions and subsequent signalling pathways triggering neurodegeneration. Therefore, membrane structure and lipid status should be considered determinant factors in Abeta-oligomer-induced synaptic and cell injuries, and therefore AD progression. Numerous epidemiological studies have highlighted close relationships between AD incidence and dietary patterns. Among the nutritional factors involved, lipids significantly influence AD pathogenesis. It is likely that maintenance of adequate membrane lipid content could prevent the production of Abeta peptide as well as its deleterious effects upon its interaction with synaptic membrane, thereby protecting neurons from Abeta-induced neurodegeneration. As major constituents of neuronal lipids, n-3 polyunsaturated fatty acids are of particular interest in the prevention of AD valuable diet ingredients whose neuroprotective properties could be essential for designing preventive nutrition-based strategies. In this review, we discuss the functional relevance of neuronal membrane features with respect to susceptibility to Abeta oligomers and AD pathogenesis, as well as the prospective capacities of lipids to prevent or to delay the disease.
Journal of the Neurological Sciences | 2007
Sabrina Florent-Béchard; Catherine Malaplate-Armand; Violette Koziel; Badreddine Kriem; Jean-Luc Olivier; Thierry Pillot; Thierry Oster
Alzheimers disease (AD) is a major public health concern in all countries. Although the precise cause of AD is still unknown, a growing body of evidence supports the notion that soluble amyloid beta-peptide (Abeta) may be the proximate cause of synaptic injuries and neuronal death early in the disease. AD patients display lower levels of docosahexaenoic acid (DHA, C22:6 ; n-3) in plasma and brain tissues as compared to age-matched controls. Furthermore, epidemiological studies suggest that high DHA intake might have protective properties against neurodegenerative diseases. These observations are supported by in vivo studies showing that DHA-rich diets limits the synaptic loss and cognitive defects induced by Abeta peptide. Although the molecular basis of these neuroprotective effects remains unknown, several mechanisms have been proposed such as (i) regulation of the expression of potentially protective genes, (ii) activation of anti-inflammatory pathways, (iii) modulation of functional properties of the synaptic membranes along with changes in their physicochemical and structural features.
Neurobiology of Aging | 2012
Cédric Desbène; Catherine Malaplate-Armand; Ihsen Youssef; Pierre Garcia; Christophe Stenger; Mathilde Sauvée; Nicolas Fischer; Dorine Rimet; Violette Koziel; Marie-Christine Escanyé; Thierry Oster; Badreddine Kriem; Frances T. Yen; Thierry Pillot; Jean Luc Olivier
Soluble beta-amyloid (Aβ) oligomers are considered to putatively play a critical role in the early synapse loss and cognitive impairment observed in Alzheimers disease. We previously demonstrated that Aβ oligomers activate cytosolic phospholipase A(2) (cPLA(2)), which specifically releases arachidonic acid from membrane phospholipids. We here observed that cPLA(2) gene inactivation prevented the alterations of cognitive abilities and the reduction of hippocampal synaptic markers levels noticed upon a single intracerebroventricular injection of Aβ oligomers in wild type mice. We further demonstrated that the Aβ oligomer-induced sphingomyelinase activation was suppressed and that phosphorylation of Akt/protein kinase B (PKB) was preserved in neuronal cells isolated from cPLA(2)(-/-) mice. Interestingly, expression of the Aβ precursor protein (APP) was reduced in hippocampus homogenates and neuronal cells from cPLA(2)(-/-) mice, but the relationship with the resistance of these mice to the Aβ oligomer toxicity requires further investigation. These results therefore show that cPLA(2) plays a key role in the Aβ oligomer-associated neurodegeneration, and as such represents a potential therapeutic target for the treatment of Alzheimers disease.
Experimental Brain Research | 2014
Hadrien Ceyte; Alexis Lion; Sébastien Caudron; Badreddine Kriem; Philippe P. Perrin; Gérome C. Gauchard
AbstractIn many daily situations, balance control is associated with a cognitive activity such as reading or a simple calculation. The objective of this study was to investigate the relationship between these two specific human activities, especially the influence of visual cues and support surface stability on body sway during a calculation task. A Sensory Organization Test, which can disrupt or suppress sensory inputs, was performed on 71 healthy young adults. The evaluations were performed both with and without mental arithmetic tasks which consisted of backward counting by three or thirteen. Our results showed that the addition of a calculation task induced an increase in body sway only when visual cues were available. They also showed the same instability effect of the support surface on the amount of body sway no matter what the associated cognitive task was. Moreover, no difference in body sway was observed between the two calculation tasks no matter what the visual context and/or the stability of the support surface were. We suggest that focusing on fulfilling the requirements of the mental calculation challenge may be responsible for the increase in body sway. This increase may be related to the use of oculomotor activity as unintentional attempts to increase arousal by self-generated body movement. Thus, this activity facilitates information processing rather than minimizing unbalance by a visual anchor point.
Alzheimers & Dementia | 2009
Pierre Garcia; Ihsen Youssef; Jo K. Utvik; Sabrina Florent-Béchard; Badreddine Kriem; Thierry Oster; Simone P. Niclou; Thierry Pillot