Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Badrul Alam is active.

Publication


Featured researches published by Badrul Alam.


Scientific Reports | 2017

Inhibition of melanogenesis by jineol from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the proteasomal degradation of tyrosinase

Badrul Alam; Vivek K. Bajpai; JungIn Lee; Peijun Zhao; Jung-Hee Byeon; Jeong-Sic Ra; Rajib Majumder; Jong Sung Lee; Jung-In Yoon; Irfan A. Rather; Yong-Ha Park; Kangmin Kim; MinKyun Na; Sang-Han Lee

In this study, the authors investigated the anti-melanogenic effects of 3,8-dihydroxyquinoline (jineol) isolated from Scolopendra subspinipes mutilans, the mechanisms responsible for its inhibition of melanogenesis in melan-a cells, and its antioxidant efficacy. Mushroom tyrosinase activities and melanin contents were determined in melan-a cells, and the protein and mRNA levels of MITF, tyrosinase, TYRP-1, and TYRP-2 were assessed. Jineol exhibited significant, concentration-dependent antioxidant effects as determined by DPPH, ABTS, CUPRAC, and FRAP assays. Jineol significantly inhibited mushroom tyrosinase activity by functioning as an uncompetitive inhibitor, and markedly inhibited melanin production and intracellular tyrosinase activity in melan-a cells. In addition, jineol abolished the expressions of tyrosinase, TYRP-1, TYRP-2, and MITF, thereby blocking melanin production and interfering with the phosphorylations of ERK1/2 and p38. Furthermore, specific inhibitors of ERK1/2 and p38 prevented melanogenesis inhibition by jineol, and the proteasome inhibitor (MG-132) prevented jineol-induced reductions in cellular tyrosinase levels. Taken together, jineol was found to stimulate MAP-kinase (ERK1/2 and p38) phosphorylation and the proteolytic degradation pathway, which led to the degradations of MITF and tyrosinase, and to suppress the productions of melanin.


Scientific Reports | 2017

Antioxidant efficacy and the upregulation of Nrf2-mediated HO-1 expression by (+)-lariciresinol, a lignan isolated from Rubia philippinensis, through the activation of p38

Vivek K. Bajpai; Badrul Alam; Khong Trong Quan; Kyoo-Ri Kwon; Mi-Kyoung Ju; Hee-Jeong Choi; Jong Sung Lee; Jung-In Yoon; Rajib Majumder; Irfan A. Rather; Kangmin Kim; Sang-Han Lee; MinKyun Na

The aim of the present study was to examine the antioxidative activity of (+)-lariciresinol (LRSL), an optically active lignan isolated from Rubia philippinensis in several in vitro assays. LRSL was also subjected to evaluate its inhibitory effect against the generation of reactive oxygen species (ROS) in murine macrophage (RAW 264.7) cells. The results showed that LRSL possessed very strong radical scavenging activity and reducing power, as well as inhibited ROS generation in a dose-dependent manner without showing any cytotoxicity. The transcriptional and translational levels of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were markedly higher in the sample treated group. LRSL treatment also increased the transcriptional and translational activities of NF-E2-related factor-2 (Nrf-2) with a corresponding increase in the transcriptional and translational activities of the heme oxygenase-1 (HO-1). LRSL activated p38 and treatments with SB239063 (a p38 inhibitor) suppressed the LRSL-induced activation of Nrf2, resulting in a decrease in HO-1 expression. Collectively, the data demonstrated that LRSL has potent antioxidative activity, decreasing ROS generation in RAW 264.7 cells and increasing the transcriptional and translational levels of antioxidant enzymes by activating Nrf2-mediated HO-1 induction via p38 signaling.


Oncology Letters | 2015

Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential

Badrul Alam; Rajib Majumder; Shahina Akter; Sang-Han Lee

The present study was conducted to evaluate the methanolic extract of Piper betle leaves (MPBL) and its organic fractions with regard to antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice and to confirm their antioxidant activities. At 24 h post-intraperitoneal inoculation of tumor cells into mice, extracts were administered at 25, 50 and 100 mg/kg body weight for nine consecutive days. The antitumor effects of the extracts were then assessed according to tumor volume, packed cell count, viable and non-viable tumor cell count, median survival time and increase in life span of EAC-bearing mice. Next, hematological profiles and serum biochemical parameters were calculated, and antioxidant properties were assessed by estimating lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels. MPBL and the ethylacetate fraction (EPBL) at a dose of 100 mg/kg induced a significant decrease in tumor volume, packed cell volume and viable cell count and increased the life span of the EAC-bearing mice (P<0.05). Hematological and serum biochemical profiles were restored to normal levels in the extract-treated mice compared with the EAC control mice. MPBL and EPBL treatment significantly decreased lipid peroxidation (P<0.05) and restored GSH, SOD and CAT levels towards normal compared with the EAC control. Taken together, the results of the present study demonstrated that Piper betle extracts exhibit significant antitumor activity, which may be attributed to the augmentation of endogenous antioxidant potential.


Scientific Reports | 2017

Precise detection of circular dichroism in a cluster of nano-helices by photoacoustic measurements

A. Benedetti; Badrul Alam; Marco Esposito; Vittorianna Tasco; G. Leahu; A. Belardini; Roberto Li Voti; Adriana Passaseo; Concita Sibilia

Compact samples of nano-helices built by means of a focused ion beam technology with large bandwidth and high dichroism for circular polarization are promising for the construction of built-in-chip sensors, where the ideal transducer must be sufficiently confined without compromising its filtering ability. Direct all-optical measurements revealed the sample’s dichroic character with insufficient details because of scattering and diffraction interference. On the other hand, photoacoustic measurements resulted to be a possible alternative investigation, since they directly deal with absorbed power and allow to get clear evidences of the differential selection for the two opposite polarization states. Multi-level numerical simulations confirmed the experimental results, proving once again the reliability of photoacoustic technique and the versatility of this class of dichroic artificial materials.


Evidence-based Complementary and Alternative Medicine | 2017

Spatholobus suberectus Exhibits Antidiabetic Activity In Vitro and In Vivo through Activation of AKT-AMPK Pathway

Peijun Zhao; Badrul Alam; Seok-hyun Lee; Young-Jun Kim; Seul Lee; Hongyan An; Hee-Jeong Choi; Hyeong-U Son; Chul-Hong Park; Hyo-Hyun Kim; Sang-Han Lee

Glucose deposition in peripheral tissue is an important parameter for the treatment of type 2 diabetes mellitus. The aim of this study was to investigate the effects of Spatholobus suberectus (Ss) on glucose disposal in skeletal muscle cells and additionally explore its in vivo antidiabetic potential. Treatment of ethanolic extract of S. suberectus (EeSs) significantly enhanced the glucose uptake, mediated through the enhanced expression of GLUT4 in skeletal muscle via the stimulation of AKT and AMPK pathways in C2C12 cells. Moreover, EeSs have potential inhibitory action on α-glucosidase activity and significantly lowered the postprandial blood glucose levels in STZ-induced diabetic mice, associated with increased expression of GLUT4 and AKT and/or AMPK-mediated signaling cascade in skeletal muscle. Furthermore, administration of EeSs significantly boosted up the antioxidant enzyme expression and also mitigated the gluconeogenesis enzyme such as PEPCK and G-6-Pase enzyme expression in liver tissue of STZ-induced diabetic mice model. Collectively, these findings suggest that EeSs have a high potentiality to mitigate diabetic symptoms through stimulating glucose uptake in peripheral tissue via the activation of AKT and AMPK signaling cascade and augmenting antioxidant potentiality as well as blocking the gluconeogenesis process in diabetic mice.


Scientific Reports | 2018

Attenuation of inflammatory responses by (+)-syringaresinol via MAP-Kinase-mediated suppression of NF-κB signaling in vitro and in vivo

Vivek K. Bajpai; Badrul Alam; Khong Trong Quan; Mi-Kyoung Ju; Rajib Majumder; Shruti Shukla; Yun Suk Huh; MinKyun Na; Sang-Han Lee; Young-Kyu Han

We examined the anti-inflammatory effects of (+)-syringaresinol (SGRS), a lignan isolated from Rubia philippinensis, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells using enzyme-based immuno assay, Western blotting, and RT-PCR analyses. Additionally, in vivo effects of SGRS in the acute inflammatory state were examined by using the carrageenan-induced hind paw edema assay in experimental mice. As a result, treatment with SGRS (25, 50, and 100 μM) inhibited protein expression of lipopolysaccharide-stimulated inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa B (NF-κB) as well as production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6) induced by LPS. Moreover, SGRS also reduced LPS-induced mRNA expression levels of iNOS and COX-2, including NO, PGE2, TNF-α, IL-1β, and IL-6 cytokines in a dose-dependent fashion. Furthermore, carrageenan-induced paw edema assay validated the in vivo anti-edema effect of SGRS. Interestingly, SGRS (30 mg/kg) suppressed carrageenan-induced elevation of iNOS, COX-2, TNF-α, IL-1β, and IL-6 mRNA levels as well as COX-2 and NF-κB protein levels, suggesting SGRS may possess anti-inflammatory activities.


Scientific Reports | 2018

Attenuation of melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/MAPKs/MITF and proteasomal degradation of tyrosinase

Badrul Alam; Arif Ahmed; Abdul Motin; Sunghwan Kim; Sang-Han Lee

Medicinal plants have been used to treat diseases from time immemorial. We aimed to examine the efficacy of the ethyl acetate fraction of Nymphaea nouchali flower extract (NNFE) against melanogenesis process, and the underlying mechanisms in vitro and in vivo. Paper spray ionisation mass spectroscopy and (+) mode electrospray ionisation revealed the presence of seven flavonoids, two spermidine alkaloids, 3,4,8,9,10-pentahydroxy-dibenzo[b,d]pyran-6-one, and shoyuflavone C in NNFE. NNFE (100 µg/mL) significantly inhibited the monophenolase and diphenolase activities of mushroom tyrosinase at 94.90 ± 0.003% and 93.034 ± 0.003%, respectively. NNFE significantly suppressed cellular tyrosinase activity and melanin synthesis in vitro in melan-a cells and in vivo in HRM2 hairless mice. Furthermore, NNFE inhibited tyrosinase (TYR), tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) expression, thereby blocking melanin synthesis. In particular, NNFE suppressed cAMP production with subsequent downregulation of CREB phosphorylation. Additionally, it stimulated MAP kinase phosphorylation (p38, JNK, and ERK1/2) and the proteasomal debasement pathway, leading to degradation of tyrosinase and MITF and the suppression of melanin production. Moreover, selective inhibitors of ERK1/2, JNK, and p38 attenuated NNFE inhibitory effects on melanogenesis, and MG-132 (a proteasome inhibitor) prevented the NNFE-induced decline in tyrosinase protein levels. In conclusion, these findings indicate that NNFE is a potential therapy for hyperpigmentation.


Oxidative Medicine and Cellular Longevity | 2018

Gossypol from Cottonseeds Ameliorates Glucose Uptake by Mimicking Insulin Signaling and Improves Glucose Homeostasis in Mice with Streptozotocin-Induced Diabetes

Badrul Alam; Hongyan An; Jeong-Sic Ra; Ji-Young Lim; Seung-Hyun Lee; Chi-Yeol Yoo; Sang-Han Lee

Glucose absorption from the gut and glucose uptake into muscles are vital for the regulation of glucose homeostasis. In the current study, we determined if gossypol (GSP) reduces postprandial hyperglycemia or enhances glucose uptake; we also investigated the molecular mechanisms underlying those processes in vitro and in vivo. GSP strongly and concentration dependently inhibited α-glucosidase by functioning as a competitive inhibitor with IC50 value of 0.67 ± 0.44. GSP activated the insulin receptor substrate 1 (IRS-1)/protein kinase B (Akt) signaling pathways and enhanced glucose uptake through the translocation of glucose transporter 4 (GLUT4) into plasma membrane in C2C12 myotubes. Pretreatment with a specific inhibitor attenuated the in vitro effects of GSP. We used a streptozotocin-induced diabetic mouse model to assess the antidiabetic potential of GSP. Consistent with the in vitro study, a higher dose of GSP (2.5 mg/kg−1) dramatically decreased the postprandial blood glucose levels associated with the upregulated expressions of GLUT4 and the IRS-1/Akt-mediated signaling cascade in skeletal muscle. GSP treatment also significantly boosted antioxidant enzyme expression and mitigated gluconeogenesis in the liver. Collectively, these data imply that GSP has the potential in managing and preventing diabetes by ameliorating glucose uptake and improving glucose homeostasis.


Biomedicine & Pharmacotherapy | 2018

Antioxidant mechanism of polyphenol-rich Nymphaea nouchali leaf extract protecting DNA damage and attenuating oxidative stress-induced cell death via Nrf2-mediated heme-oxygenase-1 induction coupled with ERK/p38 signaling pathway

Vivek K. Bajpai; Badrul Alam; Mi-Kyoung Ju; Kyoo-Ri Kwon; Yun Suk Huh; Young-Kyu Han; Sang-Han Lee

This study investigates the polyphenolic composition and antioxidant mechanism of an ethyl acetate fraction of Nymphaea nouchali leaves (NNLE). Various in vitro assays were performed using RAW 264.7 cells to assess the antioxidant effects of NNLE and to understand the underlying molecular mechanism. High-performance liquid chromatography analysis revealed the presence of gallic acid, catechin, epigallocatechin, epicatechin gallate, caffeic acid, luteolin, and kaempferol as the key polyphenolic composition of NNLE. NNLE had a potent ability to scavenge numerous free radicals through hydrogen atom transfer and/or electron donation. In addition, NNLE prevented the damage of DNA and quenched t-BHP induced generation of ROS without showing toxicity. NNLE was found to combat oxidative stress by enhancing the transcription and translation of both primary antioxidant enzymes and phase-II detoxifying enzymes, especially heme-oxygenase-1 (HO-1). NNLE treatment enhanced Nrf2 accumulation in the nucleus and post-translational phosphorylation level of p38 kinase and extracellular signal-regulated kinase (ERK) in RAW 264.7 cells. Treatment with p38 and ERK inhibitors completely suppressed NNLE-induced Nrf2 and HO-1 expression. We also found that p38 and ERK inhibitors significantly antagonized the increase in cell viability and cellular ROS scavenging activity induced by NNLE. The findings of this study provide scientific evidence on the potential of NNLE as a cost-effective and readily available source of natural phytochemicals, along with the strategy to prevent diseases associated with oxidative stress through attenuating disease progression.


Biological & Pharmaceutical Bulletin | 2018

Inhibition of Migration and Invasion in Melanoma Cells by β-Escin via the ERK/NF-κB Signaling Pathway

HyeongSeob Kwak; Hongyan An; Badrul Alam; Won-Sik Choi; Sang Yong Lee; Sang-Han Lee

β-Escin, a natural triterpene saponin was extracted from Aesculus hippocastanum seeds, which have been widely used to treat inflammation in traditional medicine. In an effort to study the possible anti-tumor effects of β-escin, we performed wound healing, invasion, and adhesion assays to examine the effects of β-escin on cell migration, invasion, and angiogenesis. Our results revealed that β-escin inhibits cell migration as well as motility in B16F10 and SK-MEL5 cells in a dose-dependent manner. RT-PCR and Western blot analysis showed that β-escin increased TIMP-1, -2 while significantly downregulated phosphorylated extracellular signal-regulated kinase (p-ERK) expression, and suppressing nuclear factor-kappa B (NF-κB) and inhibitor of nuclear factor-kappa B (IκB) expression. Overall, the data from the current study suggest that β-escin has the potential for inhibiting both metastatic and angiogenic activities, and are the earliest evidence for the involvement of the NF-κB/IκB signaling in β-escin-induced anti-tumor effects.

Collaboration


Dive into the Badrul Alam's collaboration.

Top Co-Authors

Avatar

Sang-Han Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongyan An

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Mi-Kyoung Ju

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

MinKyun Na

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hee-Jeong Choi

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Khong Trong Quan

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge