Badrul Arefin
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Badrul Arefin.
Journal of Innate Immunity | 2014
Badrul Arefin; Lucie Kucerova; Pavel Dobeš; Robert Markus; Hynek Strnad; Zhi Wang; Pavel Hyršl; Michal Zurovec; Ulrich Theopold
Heterorhabditis bacteriophora is an entomopathogenic nematode (EPN) which infects its host by accessing the hemolymph where it releases endosymbiotic bacteria of the species Photorhabdus luminescens. We performed a genome-wide transcriptional analysis of the Drosophila response to EPN infection at the time point at which the nematodes reached the hemolymph either via the cuticle or the gut and the bacteria had started to multiply. Many of the most strongly induced genes have been implicated in immune responses in other infection models. Mapping of the complete set of differentially regulated genes showed the hallmarks of a wound response, but also identified a large fraction of EPN-specific transcripts. Several genes identified by transcriptome profiling or their homologues play protective roles during nematode infections. Genes that positively contribute to controlling nematobacterial infections encode: a homolog of thioester-containing complement protein 3, a basement membrane component (glutactin), a recognition protein (GNBP-like 3) and possibly several small peptides. Of note is that several of these genes have not previously been implicated in immune responses.
Frontiers in Plant Science | 2014
Robert Krautz; Badrul Arefin; Ulrich Theopold
Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes.
Journal of Innate Immunity | 2016
Lucie Kucerova; Vaclav Broz; Badrul Arefin; Houda Ouns Maaroufi; Jana Hurychova; Hynek Strnad; Michal Zurovec; Ulrich Theopold
Chitinase-like proteins (CLPs) of the 18 glycosyl hydrolase family retain structural similarity to chitinases but lack enzymatic activity. Although CLPs are upregulated in several human disorders that affect regenerative and inflammatory processes, very little is known about their normal physiological function. We show that an insect CLP (Drosophila imaginal disc growth factor 3, IDGF3) plays an immune-protective role during entomopathogenic nematode (EPN) infections. During these infections, nematodes force their entry into the host via border tissues, thus creating wounds. Whole-genome transcriptional analysis of nematode-infected wild-type and Idgf3 mutant larvae have shown that, in addition to the regulation of genes related to immunity and wound closure, IDGF3 represses Jak/STAT and Wingless signaling. Further experiments have confirmed that IDGF3 has multiple roles in innate immunity. It serves as an essential component required for the formation of hemolymph clots that seal wounds, and Idgf3 mutants display an extended developmental delay during wound healing. Altogether, our findings indicate that vertebrate and invertebrate CLP proteins function in analogous settings and have a broad impact on inflammatory reactions and infections. This opens the way to further genetic analysis of Drosophila IDGF3 and will help to elucidate the exact molecular context of CLP function.
PLOS ONE | 2015
Badrul Arefin; Lucie Kucerova; Robert Krautz; Holger Kranenburg; Farjana Parvin; Ulrich Theopold
Apart from their role in cellular immunity via phagocytosis and encapsulation, Drosophila hemocytes release soluble factors such as antimicrobial peptides, and cytokines to induce humoral responses. In addition, they participate in coagulation and wounding, and in development. To assess their role during infection with entomopathogenic nematodes, we depleted plasmatocytes and crystal cells, the two classes of hemocytes present in naïve larvae by expressing proapoptotic proteins in order to produce hemocyte-free (Hml-apo, originally called Hemoless) larvae. Surprisingly, we found that Hml-apo larvae are still resistant to nematode infections. When further elucidating the immune status of Hml-apo larvae, we observe a shift in immune effector pathways including massive lamellocyte differentiation and induction of Toll- as well as repression of imd signaling. This leads to a pro-inflammatory state, characterized by the appearance of melanotic nodules in the hemolymph and to strong developmental defects including pupal lethality and leg defects in escapers. Further analysis suggests that most of the phenotypes we observe in Hml-apo larvae are alleviated by administration of antibiotics and by changing the food source indicating that they are mediated through the microbiota. Biochemical evidence identifies nitric oxide as a key phylogenetically conserved regulator in this process. Finally we show that the nitric oxide donor L-arginine similarly modifies the response against an early stage of tumor development in fly larvae.
Fly | 2017
Martin Kunc; Badrul Arefin; Pavel Hyršl; Ulrich Theopold
ABSTRACT One of the key factors that determine the interaction between hosts and their parasites is the frequency of their interactions, which depends on the locomotory behavior of both parts. To address host behavior we used natural infections involving insect pathogenic nematodes and Drosophila melanogaster larvae as hosts. Using a modified version of a recently described method (FIMTrack) to assess several parameters in larger sets of animals, we initially detected specific differences in larval food searching when comparing Drosophila strains. These differences were further influenced by the presence of nematodes. Given a choice, Drosophila larvae clearly avoided nematodes irrespective of their genetic background. Our newly developed methods will be useful to test candidate genes and pathways involved in host/pathogen interactions in general and to assess specific parameters of their interaction.
G3: Genes, Genomes, Genetics | 2017
Badrul Arefin; Martin Kunc; Robert Krautz; Ulrich Theopold
Many leukemia patients suffer from dysregulation of their immune system, making them more susceptible to infections and leading to general weakening (cachexia). Both adaptive and innate immunity are affected. The fruit fly Drosophila melanogaster has an innate immune system, including cells of the myeloid lineage (hemocytes). To study Drosophila immunity and physiology during leukemia, we established three models by driving expression of a dominant-active version of the Ras oncogene (RasV12) alone or combined with knockdowns of tumor suppressors in Drosophila hemocytes. Our results show that phagocytosis, hemocyte migration to wound sites, wound sealing, and survival upon bacterial infection of leukemic lines are similar to wild type. We find that in all leukemic models the two major immune pathways (Toll and Imd) are dysregulated. Toll–dependent signaling is activated to comparable extents as after wounding wild-type larvae, leading to a proinflammatory status. In contrast, Imd signaling is suppressed. Finally, we notice that adult tissue formation is blocked and degradation of cell masses during metamorphosis of leukemic lines, which is akin to the state of cancer-dependent cachexia. To further analyze the immune competence of leukemic lines, we used a natural infection model that involves insect-pathogenic nematodes. We identified two leukemic lines that were sensitive to nematode infections. Further characterization demonstrates that despite the absence of behavioral abnormalities at the larval stage, leukemic larvae show reduced locomotion in the presence of nematodes. Taken together, this work establishes new Drosophila models to study the physiological, immunological, and behavioral consequences of various forms of leukemia.
Archive | 2016
Badrul Arefin; Martin Kunc; Robert Krautz; Ulrich Theopold
Archive | 2016
Martin Kunc; Badrul Arefin; Pavel Hyršl; Ulrich Theopold
Archive | 2016
Pavel Hyršl; Pavel Dobeš; Badrul Arefin; Lucie Kucerova; Robert Markus; Wang Zhi; Michal Žurovec; Ulrich Theopold
Archive | 2015
Pavel Hyršl; Pavel Dobeš; Badrul Arefin; Jakub Berka; Lucie Kucerova; Robert Markus; Zhi Wang; Michal Žurovec; Ulrich Theopold