Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baek Gil Kim is active.

Publication


Featured researches published by Baek Gil Kim.


Journal of Cell Science | 2010

Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial–mesenchymal transition-like state in breast cancer cells in vitro

Ming Qing Gao; Baek Gil Kim; Suki Kang; Yoon Pyo Choi; Hangran Park; Kyu Sub Kang; Nam Hoon Cho

Fibroblasts were extracted from tissue in tumor burden zones, distal normal zones and interface zones between tumor and normal tissue of human breast carcinomas, and the corresponding fibroblasts were designated as cancer-associated fibroblasts (CAFs), normal zone fibroblasts (NFs) and interface zone fibroblasts (INFs). The crosstalk between three types of fibroblasts and breast cancer cells was evaluated using an in vitro direct co-culture model. We found that INFs grew faster and expressed higher levels of fibroblast activation protein than did NFs and CAFs. Compared with CAFs and NFs, INFs grown with breast cancer cells were significantly more effective in inducing an epithelial-mesenchymal transition (EMT) in cancer cells, as indicated by induction of vimentin and N-cadherin and downregulation of E-cadherin. This EMT process was also accompanied by activation of extracellular signal-regulated kinase (ERK) and modulation of membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Additionally, INFs promoted breast cell migration to a larger extent compared with NFs and CAFs. Taken together, these findings indicate that INFs isolated from the tumor interface zone exhibited more robust biological modulatory activity than did NFs and CAFs isolated from normal and tumor zones of the same tumor tissue, suggesting that the interface zone of the tumor represents a dynamic region vital to tumor progression.


American Journal of Pathology | 2011

Laminin-332-Rich Tumor Microenvironment for Tumor Invasion in the Interface Zone of Breast Cancer

Baek Gil Kim; Hee Jung An; Suki Kang; Yoon Pyo Choi; Ming Qing Gao; Haengran Park; Nam Hoon Cho

Dense fibrosis, which is caused by desmoplastic reaction, is usually found in invasive ductal carcinoma and may represent the alteration of the tumor microenvironment preceding tumor invasion. Thus, the dense fibrotic zone around invasive ductal carcinoma can be considered to be the actual tissue site of tumor microenvironment, where the precedent alterations for tumor invasion occur. To characterize the dense fibrotic zone, we classified invasive ductal carcinoma tissue into a tumor zone, a normal zone, and the novel interface zone (IZ), which shows dense fibrosis. The postulated IZ is a 5-mm-wide belt that circles the tumor margin and overlaps with normal tissue. Of the extracellular matrix components, laminin-332 was specifically overexpressed in the IZ. Events that appear to be similar to the epithelial-mesenchymal transition, a novel source of myofibroblast formation from epithelial cells, were observed in the IZ, according to the following characteristics: overexpression of matrix metalloproteinase 3, membrane type 1-matrix metalloproteinase, snail, and zinc finger E-box-binding homeobox 1, and the gain of N-cadherin expression, as well as the down-regulation of miR200c. The myofibroblasts isolated from the IZ, which were designated interface zone-fibroblast, displayed laminin-332 and membrane type 1-matrix metalloproteinase overexpression, in contrast with both cancer-associated fibroblasts and normal breast fibroblasts. Taken together, our results suggest that the IZ, which shows dense fibrosis, may provide a specialized microenvironment for guiding tumor invasion: the fibrosis caused by laminin-332 overexpressing myofibroblast formation (interface zone-fibroblast) via epithelial-mesenchymal transition.


Journal of Proteome Research | 2012

In situ identification and localization of IGHA2 in the breast tumor microenvironment by mass spectrometry

Suki Kang; Heysun Maeng; Baek Gil Kim; Gao Ming Qing; Yoon Pyo Choi; Hak Yong Kim; Pan Soo Kim; Yangsun Kim; Young Hwan Kim; Young Deuk Choi; Nam Hoon Cho

Modifications in the tumor microenvironment (TME) play a major role in the establishment, progression, and metastasis of cancer. Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is a powerful technique that enables the simultaneous identification and localization of biological compounds within tissues. To detect markers of early TME remodeling in invasive breast cancer, we used MALDI-MSI to compare the molecular profiles of tissues from the breast cancer interface zone, tumor zone, and normal-tissue zone. Using direct-tissue MALDI tandem mass spectrometry (MS/MS), we identified immunoglobulin heavy constant alpha 2 (IGHA2) as a new, zone-specific protein in the breast TME. The zone-specific expression of IGHA2 was verified by immunoblotting and immunohistochemical analysis. IGHA2 expression was consistently positive in tumor cells that were metastatic to regional nodes, with intense expression along the cytoplasmic borders. As a factor related to an increased percentage of nodes with tumor metastasis, IGHA2 expression was upregulated 3.745-fold in cases with an increased number of cancerous nodes (p = 0.0468). Our results provide the first evidence of IGHA2 as a marker of the early process of TME remodeling in invasive breast cancer. Furthermore, IGHA2 may be a novel marker for regional metastases in the lymph nodes of patients with breast cancer.


Journal of Proteome Research | 2010

Proteomic molecular portrait of interface zone in breast cancer.

Suki Kang; Min Ju Kim; Heejung An; Baek Gil Kim; Yoon Pyo Choi; Kyu Sub Kang; Ming Qing Gao; Hangran Park; Hyung Jin Na; Hye Kyung Kim; Hae Ree Yun; Dong Su Kim; Nam Hoon Cho

Surgical tumor margins are intended to encompass residual tumor cells but may not always accurately delineate the boundary between tumor and normal tissue. Efforts to define tumor margins based on molecular analysis have achieved limited success. Furthermore, no clinical trials have addressed the scope of the tumor microenvironment. Here, we considered the tumor cell population and surrounding microenvironment in delineating tumor margins, classifying breast cancer into tumor and normal zones, and introducing the concept of an interface zone, the region between the invading tumor front and normal tissue, which develops during tumor invasion and metastasis through remodeling of the tumor microenvironment. Pathological signatures of invasion markers in tumor tissues are most dynamic within the invading tumor front. We compared protein profiles of tumor, normal, and interface zones using MALDI-MS. Proteins upregulated in the interface zone were identified by peptide mass fingerprinting and confirmed by database searching with chemically assisted MALDI-PSD spectra. Upregulation was confirmed for RhoGDIα, CAPG, WDR1, and CK8 by Western and immunohistochemical analyses. Our results demonstrate that the molecular profile of the interface zone is unique and suggest that upregulation of proteins here may be related to progression and metastasis of breast carcinomas.


Cancer | 2011

Nuclear localization of Nm23-H1 in head and neck squamous cell carcinoma is associated with radiation resistance.

Haeng Ran Park; Se-Heon Kim; Sei Young Lee; Ji Min Sung; Ae Ran Park; Suki Kang; Baek Gil Kim; Yoon Pyo Choi; Yong Bae Kim; Nam Hoon Cho

Although radiation resistance is a primary issue in radiation therapy, attempts to find predictors of radiation resistance have met with little success. The authors therefore aimed to determine predictors for radiation resistance to improve the prognosis of head and neck squamous cell carcinoma (HNSCC).


Biochemical and Biophysical Research Communications | 2013

CD24⁺ ovary cancer cells exhibit an invasive mesenchymal phenotype.

Kyu Sub Kang; Yoon Pyo Choi; Ming Qing Gao; Suki Kang; Baek Gil Kim; Joo Hyun Lee; Mi Jeong Kwon; Young Kee Shin; Nam Hoon Cho

We recently reported that the subset of CD24(+) cells in ovarian cancer possesses various cancer stem cell properties. In this study, we further show that this subpopulation of ovarian cancer cells exhibits an epithelial-mesenchymal transition (EMT) phenotype, high invasive capacity, and CXCR4/SDF-1-mediated chemotactic migration. We evaluated CD24 expression in various ovarian cancer cell lines by flow cytometric analysis. CAOV3 and a primary ovarian cancer cell line Clone 4 were sorted into CD24(+) and CD24(-) subpopulations by FACS and Western blot, cell invasion, adhesion, and in vitro chemotaxis assays were performed with these two subpopulations. We also assessed the effects of shRNA depletion of CD24 in CAOV3 and Clone 4 cells by Western blot and cell invasion assays. CD24 expression in ovarian cancer cell lines correlated with aggressive histologic subtypes of epithelial ovarian cancer. The CD24(+) subpopulation was also more invasive than the CD24(-) subpopulation and showed higher CXCR4/SDF-1-mediated chemotactic migration. CD24(+) cells exhibited an EMT phenotype as characterized by loss of E-cadherin expression and gain of vimentin, Twist, and Snail1 expression. In addition, CD24(+) cells stimulated cell attachment to fibronectin through the activation of β1 integrin. Depletion of CD24 expression by CD24 shRNA efficiently suppressed cell invasion and induced downregulation of CXCR4 as well as loss of the EMT phenotype. In conclusion, CD24 expression in ovarian cancer may be related to tumor aggressiveness, in particular cell invasion and chemotactic migration. Therefore, CD24 may be a good candidate for a therapeutic target for ovarian cancer.


Breast Cancer Research | 2012

Invasive breast cancer induces laminin-332 upregulation and integrin β4 neoexpression in myofibroblasts to confer an anoikis-resistant phenotype during tissue remodeling

Baek Gil Kim; Ming-Qing Gao; Yoon Pyo Choi; Suki Kang; Haeng Ran Park; Kyu Sub Kang; Nam Hoon Cho

IntroductionAlthough development of anoikis-resistant myofibroblasts during tissue remodeling is known to be associated with tumor invasion, the mechanism by which myofibroblasts become resistant to anoikis is unknown. We previously demonstrated laminin-332 upregulation in the fibrosis around invasive ductal carcinoma (IDC). Because laminin-332 promotes cell survival through binding to integrins, we hypothesized that invasive breast cancer cells confer an anoikis-resistant phenotype on myofibroblasts by upregulating laminin-332 expression during tissue remodeling. Here, we demonstrate that invasive breast cancer cells induce laminin-332 upregulation and integrin β4 neoexpression in myofibroblasts to confer an anoikis-resistant phenotype.MethodsThree types of fibroblasts were isolated from the tumor burden, the fibrosis, and normal tissue of patients with early stage IDC (less than 10 mm diameter), designated cancer-associated fibroblasts (CAFs), interface fibroblasts (InFs), and normal breast fibroblasts (NBFs), respectively. To investigate direct and indirect crosstalk with tumor cells, fibroblasts were co-cultured with invasive MDA-MB-231 or noninvasive MCF7 cells or in conditioned medium. Anoikis resistance of fibroblasts was measured by cell viability and caspase-3 activity after incubation on poly-HEMA coated plates for 72 hours. Involvement of laminin-332/integrin α3β1 or α6β4 signaling in anoikis resistance was confirmed by treatment with purified laminin-332 or blocking antibodies against laminin-332, integrin β1, or integrin β4.ResultsMDA-MB-231 cells induced laminin-332 upregulation and integrin β4 neoexpression in fibroblasts, leading to anoikis resistance. InFs showed a higher endogenous level of laminin-332 than did CAFs and NBFs. After stimulation with MDA-MB-231-conditioned medium, laminin-332 expression of InFs was dramatically increased and maintained under anoikis conditions. Laminin-332 upregulation was also observed in CAFs and NBFs, but at a lower level than in InFs. Laminin-332 induced Akt (Ser473) phosphorylation by binding to integrin α3β1. Integrin β4 neoexpression induced laminin-332-independent Rac1 activation and promoted anoikis resistance in fibroblasts approximately twofold more effectively than did laminin-332, regardless of the type of fibroblast. In addition, integrin β4 expression suppressed fibroblast aggregation in conditions of anoikis.ConclusionInvasive breast cancer cells confer an anoikis-resistant phenotype on myofibroblasts during tissue remodeling by inducing laminin-332 upregulation and integrin β4 neoexpression. Interface fibroblasts appear to be the primary myofibroblasts that interact with invasive tumor cells during tissue remodeling.


Biochemical and Biophysical Research Communications | 2012

Targeting ILK and β4 integrin abrogates the invasive potential of ovarian cancer

Yoon Pyo Choi; Baek Gil Kim; Ming Qing Gao; Suki Kang; Nam Hoon Cho

Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of β1 and β4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of β1 and β4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of β4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of β4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting β4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.


International Journal of Cancer | 2014

Cancer-associated fibroblast promote transmigration through endothelial brain cells in three-dimensional in vitro models.

Yoon Pyo Choi; Joo Hyun Lee; Ming Qing Gao; Baek Gil Kim; Suki Kang; Se Hoon Kim; Nam Hoon Cho

Brain metastases are associated with high morbidity as well as with poor prognosis and survival in breast cancer patients. Despite its clinical importance, metastasis of breast cancer cells through the blood‐brain barrier (BBB) is poorly understood. The objective of our study was to investigate whether cancer‐associated fibroblasts (CAFs) play crucial roles in breast cancer brain metastasis. Using a cell adhesion assays, in vitro BBB permeability and transmigration assays and soft agar colony formation assays, we investigated the physical roles of CAFs in breast cancer brain metastasis. We also performed immunofluorescence, flow cytometric analysis, Droplet Digital PCR and Simon™ Simple Western System to confirm changes in expression levels. We established two novel three‐dimensional (3D) culture systems using a perpendicular slide chamber and applying 3D embedded culture method to reflect brain metastasis conditions. With a newly developed device, CAFs was proven to promote cell adhesion to human brain microvascular endothelial cells, in vitro BBB permeability and transmigration and colony formation of breast cancer cells. Furthermore, CAFs enhanced the invasive migration of breast cancer cells in two kinds of 3D cultures. These 3D models also reliably recapitulate the initial steps of BBB transmigration, micro‐metastasis and colonization. Expression of integrin α5β1 and αvβ3, c‐MET and α2,6‐siayltransferase was increased in breast cancer cells that migrated through the BBB. In conclusion, based on our in vitro BBB and co‐culture models, our data suggest that CAFs may play a role in breast cancer brain metastasis.


Cancer Letters | 2013

Human breast cancer-associated fibroblasts enhance cancer cell proliferation through increased TGF-α cleavage by ADAM17

Ming Qing Gao; Baek Gil Kim; Suki Kang; Yoon Pyo Choi; Joo Heon Yoon; Nam Hoon Cho

We demonstrate here increased expression of ADAM17 protein in cancer-associated fibroblasts (CAFs) extracted from human breast carcinomas compared with donor-matched normal fibroblasts, and TGF-α secretion positively correlates with ADAM17 expression in these cells. In SK-BR-3 cells co-cultured with CAFs, CAF-secreted TGF-α promotes cell proliferation by activation of EGFR, Akt, and ERK, but it does not promote cell migration. Furthermore, anti-TGF-α neutralizing antibodies antagonize the CAF-dependent increase in proliferation and activation of EGFR, Akt and ERK. Thus, pharmacologic inhibition of ADAM17 and TGF-α may have therapeutic potential for the treatment of breast cancer when fibroblast-directed therapy is considered.

Collaboration


Dive into the Baek Gil Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge