Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baicheng Liu is active.

Publication


Featured researches published by Baicheng Liu.


Journal of Materials Processing Technology | 1998

A study of the interfacial heat transfer between an iron casting and a metallic mould

F. Lau; W. B. Lee; Shou Mei Xiong; Baicheng Liu

Abstract Computer simulation of the solidification process is used widely in industry in the design of the mould and the die configuration. The heat-transfer coefficient between the mould and the cast metal is one of the important variables. In this work, the heat-transfer behavior and the time-dependent heat-transfer coefficient between an iron casting and a metallic mould were investigated by inverse heat-conduction analysis. A one-dimensional inverse heat calculation program, which can be used in both rectangular and cylindrical coordinate systems, was developed based on a non-linear estimation method. Temperature distributions along the direction of heat flux from the casting to the mould were measured, the predicted temperature profile being found to compare well with the experimental results. The heat-transfer coefficient was found to drop rapidly during the initial stage of solidification and then increase with the solidification process after a short time period of steady stage. It is concluded that a three stage segmented linear equation of the coefficient can be used to represent the heat-transfer behavior and be implemented in numerical analysis of the casting process.


Science and Technology of Advanced Materials | 2001

A study on the numerical simulation of thermal stress during the solidification of shaped castings

Baicheng Liu; Jinwu Kang; S.M. Xiong

Abstract In order to study the development of thermal stress and to predict the hot tearing and residual stress of shaped casting, two models were used to carry out the stress analysis of the two stages of solidification. The rheological model [H]–[H|N]–[N|S] was used for the quasi-solid zone while the thermo-elasto-plastic model was used for the period after solidification. Coupling the thermal analysis based on the finite different method with the stress analysis based on the finite element method, a FDM/FEM integrated system of thermal stresses analysis during the solidification process was developed. After experimental verification, the system was put into practical application. The analysis results during the quasi-solid zone show that the visco-plastic strain is an important factor for the occurrence of hot tearing. The hot tearing of a case steel casting and the residual stresses and deformation of a hydro-turbine blade steel casting were analyzed and predicted using the system. The simulation and the practical results were basically in agreement.


Transactions of Nonferrous Metals Society of China | 2014

Effect of cooling rate on solidification parameters and microstructure of Al−7Si−0.3Mg−0.15Fe alloy

Rui Chen; Yu-feng Shi; Qingyan Xu; Baicheng Liu

Abstract The effects of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15Fe alloy during solidification process were studied. To obtain different cooling rates, the step casting with five different thicknesses was used and the cooling rates and solidification parameters were determined by computer-aided thermal analysis method. The results show that at higher cooling rates, the primary α(Al) dendrite nucleation temperature, eutectic reaction temperature and solidus temperature shift to lower temperatures. Besides, with increasing cooling rate from 0.19 °C/s up to 6.25 °C/s, the secondary dendritic arm spacing decreases from 68 μm to 20 μm, and the primary dendritic volume fraction declines by approximately 5%. In addition, it reduces the length of Fe-bearing phase from 28 μm to 18 μm with a better uniform distribution. It is also found that high cooling rates make for modifying eutectic silicon into fibrous branched morphology, and decreasing block or lamella shape eutectic silicon.


International Journal of Minerals Metallurgy and Materials | 2012

Numerical simulation of macrosegregation in steel ingots using a two-phase model

Wensheng Li; Houfa Shen; Baicheng Liu

A two-phase model for the prediction of macrosegregation formed during solidification is presented. This model incorporates the descriptions of heat transfer, melt convection, solute transport, and solid movement on the system scale with microscopic relations for grain nucleation and growth. Then the model is used to simulate the solidification of a benchmark industrial 3.3-t steel ingot. Simulations are performed to investigate the effects of grain motion and pipe shrinkage formation on the final macrosegregation pattern. The model predictions are compared with experimental data and numerical results from literatures. It is demonstrated that the model is able to express the overall macrosegregation patterns in the ingot. Furthermore, the results show that it is essential to consider the motion of equiaxed grains and the formation of pipe shrinkage in modelling. Several issues for future model improvements are identified.


Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science | 2014

Modeling of Species Transport and Macrosegregation in Heavy Steel Ingots

Wensheng Li; Houfa Shen; Xiong Zhang; Baicheng Liu

In the current study, two significant phenomena involved in heavy steel ingot casting, i.e., species transport and macrosegregation, were numerically simulated. First, a ladle–tundish–mold species transport model describing the entire multiple pouring process of heavy steel ingots was proposed. Carbon distribution and variation in both the tundish and the mold of a 292-ton steel ingot were predicted. Results indicate high carbon concentration in the bottom of the mold while low concentration carbon at the top of mold after the pouring process. Such concentration distribution helps in reducing both negative segregation in the bottom of the solidified ingot and positive segregation at the top. Second, a two-phase multiscale macrosegregation model was used to simulate the solidification process of industrial steel ingots. This model takes into account heat transfer, fluid flow, solute transport, and equiaxed grain motion on a system scale, as well as grain nucleation and growth on a microscopic scale. The model was first used to analyze a three-dimensional industry-scale steel ingot as a benchmark. Then, it was applied to study macrosegregation formation in a 53-ton steel ingot. Macrosegregation predicted by the numerical model was presented and compared with experimental measurements. Typical macrosegregation patterns in heavy steel ingots are found to be well reproduced with the two-phase model.


Tsinghua Science & Technology | 2006

A Modified Cellular Automaton Method for the Modeling of the Dendritic Morphology of Binary Alloys

Ying Liu; Qingyan Xu; Baicheng Liu

Abstract A cellular automaton (CA)-based model for the precise two-dimensional simulation of the dendritic morphology of cast aluminum alloys was developed. Compared with previous CA models, the new model considers the solidification process in more detail, solving the solute and heat conservation equations in the modeling domain, including calculation of the solid fraction, the tip velocity, and the solute diffusion process, all of which have significant influence on the dendrite evolution. The rotating grids technique was used in the simulation to avoid anisotropy introduced by the square grid. Dendritic grain profiles for different crystallographic orientations show the existence of a great number of regular and parallel secondary and tertiary arms. The simulation results for the secondary arm spacing and grain size were compared with experimental data and with results reported in the literature. A good agreement was found between the simulated results and the experimental data. It can be concluded that the model can be used to predict the dendritic microstructure of aluminum alloy in a quantitative manner.


Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science | 2014

Multiscale Modeling and Simulation of Directional Solidification Process of Turbine Blade Casting with MCA Method

Qingyan Xu; Hang Zhang; Xiang Qi; Baicheng Liu

Nickel-based superalloy turbine blade castings are widely used as a key part in aero engines. However, due to the complex manufacturing processes, the complicated internal structure, and the interaction between different parts of the turbine blade, casting defects, such as stray grains, often happen during the directional solidification of turbine blade castings, which causes low production yield and high production cost. To improve the quality of the directionally solidified turbine blade castings, modeling and simulation technique has been employed to study the microstructure evolution as well as to optimize the casting process. In this article, a modified cellular automaton (MCA) method was used to simulate the directional solidification of turbine blade casting. The MCA method was coupled with macro heat transfer and micro grain growth kinetics to simulate the microstructure evolution during the directional solidification. In addition, a ray tracing method was proposed to calculate the heat transfer, especially the heat radiation of multiple blade castings in a Bridgman furnace. A competitive mechanism was incorporated into the grain growth model to describe the grain selection behavior phenomena of multiple columnar grains in the grain selector. With the proposed models, the microstructure evolution and related defects could be simulated, while the processing parameters optimized and the blade casting quality guaranteed as well. Several experiments were carried out to validate the proposed models, and good agreement between the simulated and experimental results was achieved.


Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2015

Three-Dimensional Phase-Field Simulation and Experimental Validation of β-Mg17Al12 Phase Precipitation in Mg-Al-Based Alloys

Guomin Han; Zhiqiang Han; Alan A. Luo; Baicheng Liu

A three-dimensional (3D) phase-field model has been developed to simulate the formation of lath-shaped β-Mg17Al12 phase during hcp→bcc transformation in Mg-Al-based alloys. The model considers the synergistic effects of the elastic strain energy associated with the lattice rearrangements that accompany the phase transformation, and the interface anisotropy (both in interfacial energy and interface mobility coefficient). By using the proposed model, the essential features of 3D morphology of the β phase precipitate have been successfully predicted and experimentally validated using high-resolution transmission electron microscopy and atomic force microscopy. Furthermore, the spatial distribution of anisotropic elastic interaction field around a pre-existing β precipitate has been quantitatively determined using 3D phase-field simulation, and the effects of the anisotropic elastic interaction energy on subsequent nucleation of β phase near a pre-existing precipitate have been revealed. The results suggest that the anisotropic elastic interaction energy can promote the formation of new nucleus near the lozenge ends of the pre-existing precipitate, as explicitly substantiated by the experimental observations. The influence of different combinations of interface anisotropy and elastic strain energy on the thickness of β phase precipitate has been elucidated. The correlation between microstructural design during precipitation and the alloy-strengthening mechanisms has also been discussed in terms of dislocation motion. Based on these results, possible strategies for strengthening Mg-Al-based alloys are proposed for magnesium alloy development and microstructural design.


Materials | 2014

Numerical Simulation and Optimization of Directional Solidification Process of Single Crystal Superalloy Casting

Hang Zhang; Qingyan Xu; Baicheng Liu

The rapid development of numerical modeling techniques has led to more accurate results in modeling metal solidification processes. In this study, the cellular automaton-finite difference (CA-FD) method was used to simulate the directional solidification (DS) process of single crystal (SX) superalloy blade samples. Experiments were carried out to validate the simulation results. Meanwhile, an intelligent model based on fuzzy control theory was built to optimize the complicate DS process. Several key parameters, such as mushy zone width and temperature difference at the cast-mold interface, were recognized as the input variables. The input variables were functioned with the multivariable fuzzy rule to get the output adjustment of withdrawal rate (v) (a key technological parameter). The multivariable fuzzy rule was built, based on the structure feature of casting, such as the relationship between section area, and the delay time of the temperature change response by changing v, and the professional experience of the operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be used to optimize v in real-time during the manufacturing process. The optimized process was proven to be more flexible and adaptive for a steady and stray-grain free DS process.


Ironmaking & Steelmaking | 2009

Water modelling of level fluctuation in thin slab continuous casting mould

B. Z. Shen; Houfa Shen; Baicheng Liu

Abstract A water modelling experiment was conducted to study the meniscus instability in a continuous thin slab casting mould using particle image visualisation. The results show that the level fluctuation, circulation centre position and jet impinging depth are unsteady and periodic with a similar period. The probability distributions of the fluctuating meniscus and wave height have been obtained with the highest frequency near the average position. The flow pattern and meniscus profile may be momentarily asymmetrical, and the phase difference of level fluctuation in the two sides of mould centreline is a half period. The average meniscus profile, the highest and lowest meniscus positions are generally symmetrical about the mould centreline. The wave height mainly depends on the jet impinging depth and circulation centre position. The wave height increases as the jet impinging position rises and the circulation centre approaches to the submerged entry nozzle.

Collaboration


Dive into the Baicheng Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hang Zhang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge