Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baik Ho Cho is active.

Publication


Featured researches published by Baik Ho Cho.


Molecular Plant-microbe Interactions | 2008

2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana.

Song Mi Cho; Beom Ryong Kang; Song Hee Han; Anne J. Anderson; J. Park; Yong-Hwan Lee; Baik Ho Cho; Kwang-Yeol Yang; Choong-Min Ryu; Young Cheol Kim

Root colonization of plants with certain rhizobacteria, such as Pseudomonas chlororaphis O6, induces tolerance to biotic and abiotic stresses. Tolerance to drought was correlated with reduced water loss in P. chlororaphis O6-colonized plants and with stomatal closure, indicated by size of stomatal aperture and percentage of closed stomata. Stomatal closure and drought resistance were mediated by production of 2R,3R-butanediol, a volatile metabolite of P. chlororaphis O6. Root colonization with bacteria deficient in 2R,3R-butanediol production showed no induction of drought tolerance. Studies with Arabidopsis mutant lines indicated that induced drought tolerance required the salicylic acid (SA)-, ethylene-, and jasmonic acid-signaling pathways. Both induced drought tolerance and stomatal closure were dependent on Aba-1 and OST-1 kinase. Increases in free SA after drought stress of P. chlororaphis O6-colonized plants and after 2R,3R-butanediol treatment suggested a primary role for SA signaling in induced drought tolerance. We conclude that the bacterial volatile 2R,3R-butanediol was a major determinant in inducing resistance to drought in Arabidopsis through an SA-dependent mechanism.


Molecular Plant-microbe Interactions | 2006

GacS-Dependent Production of 2R, 3R-Butanediol by Pseudomonas chlororaphis O6 Is a Major Determinant for Eliciting Systemic Resistance Against Erwinia carotovora but not Against Pseudomonas syringae pv. tabaci in Tobacco

Song Hee Han; Seung Je Lee; Jae Hak Moon; Keun Hyung Park; Kwang Yeol Yang; Baik Ho Cho; Kil Yong Kim; Yong Whan Kim; Myung Chul Lee; Anne J. Anderson; Young Cheol Kim

Root colonization by a plant-beneficial rhizobacterium, Pseudomonas chlororaphis O6, induces disease resistance in tobacco against leaf pathogens Erwinia carotovora subsp. carotovora SCC1, causing soft-rot, and Pseudomonas syringae pv. tabaci, causing wildfire. In order to identify the bacterial determinants involved in induced systemic resistance against plant diseases, extracellular components produced by the bacterium were fractionated and purified. Factors in the culture filtrate inducing systemic resistance were retained in the aqueous fraction rather than being partitioned into ethyl acetate. Fractionation on high-performance liquid chromatography followed by nuclear magnetic resonance mass spectrometry analysis identified the active compound as 2R, 3R-butanediol. 2R, 3R butanediol induced systemic resistance in tobacco to E. carotovora subsp. carotovora SCC1, but not to P. syringae pv. tabaci. Treatment of tobacco with the volatile 2R, 3R-butanediol enhanced aerial growth, a phenomenon also seen in plants colonized by P. chlororaphis O6. The isomeric form of the butanediol was important because 2S, 3S-butandiol did not affect the plant. The global sensor kinase, GacS, of P. chlororaphis O6 was a key regulator for induced systemic resistance against E. carotovora through regulation of 2R, 3R-butanediol production. This is the first report of the production of these assumed fermentation products by a pseudomonad and the role of the sensor kinase GacS in production of 2R, 3R-butanediol.


Physiological and Molecular Plant Pathology | 1992

cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungus Erysiphe graminis

Hans Thordal-Christensen; Jakob Brandt; Baik Ho Cho; Søren K. Rasmussen; Per L. Gregersen; V. Smedegaard-Petersen; David B. Collinge

Abstract A cDNA library of RNA from barley leaves inoculated with Erysiphe graminis was screened using labelled cDNA enriched for specific sequences by subtractive hybridization against RNA from non-inoculated leaves. This resulted in isolation of several clones representing pathogen induced genes. By cross-hybridization and sequence analysis, one of the cDNAs (pBT6-3) was found to be a partial clone representing a putative peroxidase, for which a full-length cDNA clone (pBH6-301) was subsequently isolated. The predicted amino acid sequence revealed a 21 amino acid signal peptide and a 294 amino acid mature protein (31 kDa) and shows 56 % amino acid identity to a basic peroxidase from turnip, 89 % to a putative peroxidase from wheat, but only 38% to the amino acid sequence derived from the cDNA clone (pcD1311) of a second putative barley peroxidase expressed in leaves. Northern blot analysis showed that the pBT6-3 (pBH6-301) transcript is elevated as early as 4 h after inoculation with E. graminis f. sp. hordei and that two maxima in transcript levels appear, which can be correlated with penetration attempts by the fungus. The amount of the pcD1311 transcript was also found to increase in inoculated leaves but at a later time point.


Molecular Plant-microbe Interactions | 2008

Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization.

Mi Seong Kim; Song Mi Cho; Eun Young Kang; Yang Ju Im; Hoon Hwangbo; Young Cheol Kim; Choong-Min Ryu; Kwang Yeol Yang; Gap Chae Chung; Baik Ho Cho

Root colonization by Pseudomonas chlororaphis O6 in cucumber elicited an induced systemic resistance (ISR) against Corynespora cassiicola. In order to gain insight into O6-mediated ISR, a suppressive subtractive hybridization technique was applied and resulted in the isolation of a cucumber galactinol synthase (CsGolS1) gene. The transcriptional level of CsGolS1 and the resultant galactinol content showed an increase several hours earlier under O6 treatment than in the water control plants following C. cassiicola challenge, whereas no difference was detected in the plants without a pathogen challenge. The CsGolS1-overexpressing transgenic tobacco plants demonstrated constitutive resistance against the pathogens Botrytis cinerea and Erwinia carotovora, and they also showed an increased accumulation in galactinol content. Pharmaceutical application of galactinol enhanced the resistance against pathogen infection and stimulated the accumulation of defense-related gene transcripts such as PR1a, PR1b, and NtACS1 in wild-type tobacco plants. Both the CsGolS1-overexpressing transgenic plants and the galactinol-treated wild-type tobacco plants also demonstrated an increased tolerance to drought and high salinity stresses.


Current Microbiology | 2003

Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium.

Chul Hong Kim; Song Hee Han; Kil Yong Kim; Baik Ho Cho; Yong Hwan Kim; Bon Sung Koo; Young Cheol Kim

A grass rhizosphere bacterium, Enterobacter intermedium (60-2G), has a strong ability to solubilize insoluble phosphate. Certain phosphate-solubilizing bacteria secrete gluconic acid for this process. The gluconic acid is produced by direct extracellular oxidation of glucose by a glucose dehydrogenase equipped with pyrroloquinoline quinone (PQQ) as a cofactor. A pqq gene cluster producing PQQ was detected in E. intermedium and this sequence conferred phosphate-solubilizing activity to Escherichia coli DH5α. The 6,783-bp pqq sequence had six open reading frames (pqqA, B, C, D, E, and F) and showed 50–95% homology to pqq genes of other bacteria. E. coli DH5α expressing the E. intermedium pqq genes solubilized phosphate from hydroxyapatite after a pH drop to pH 4.0, which paralleled in time the secretion of gluconic acid. We speculate that production of PQQ in E. coli DH5α expressing the pqq cluster activates an endogenous glucose dehydrogenase to permit gluconic acid secretion that solubilizes the insoluble phosphate.


Current Microbiology | 2006

Production of Indole-3-Acetic Acid in the Plant-Beneficial Strain Pseudomonas chlororaphis O6 Is Negatively Regulated by the Global Sensor Kinase GacS

Beom Ryong Kang; Kwang Yeol Yang; Baik Ho Cho; Tae Ho Han; In Seon Kim; Myung Chul Lee; Anne J. Anderson; Young Cheol Kim

Certain plant growth–promoting bacteria, such as Pseudomonas fluorescens 89B61 and Bacillus pumilus SE34, secreted high levels of indole-3-acetic acid (IAA) in tryptophan-amended medium in stationary phase as determined by chromogenic analysis and high-performance liquid chromatography. Two other growth-promoting strains, P. chlororaphis O6 and Serratia marcescens 90-166, did not produce these high levels of IAA. However, when the gacS mutant of P. chlororaphis O6 was grown in tryptophan-supplemented medium, IAA was detected in culture filtrates. IAA production by the gacS mutant in P. chlororaphis O6 was repressed in the tryptophan medium by complementation with the wild-type gacS gene. Thus, the global regulatory Gac system in P. chlororaphis O6 acts as a negative regulator of IAA production from trypophan.


Molecular Plant Pathology | 2006

Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6

Song Hee Han; Anne J. Anderson; Kwang Yeol Yang; Baik Ho Cho; Kil Yong Kim; Myung Chul Lee; Yong Hwan Kim; Young Cheol Kim

SUMMARY Colonization of the roots of tobacco by Pseudomonas chlororaphis O6 induces systemic resistance to the soft-rot pathogen, Erwinia carotovora ssp. carotovara SCC1. A screen of the transposon mutants of P. chlororaphis O6 showed mutants with about a fivefold reduction in ability to induce systemic resistance to the soft-rot disease. These mutations disrupted genes involved in diverse functions: a methyl-accepting chemotaxis protein, biosynthesis of purines, phospholipase C, transport of branched-chain amino acids and an ABC transporter. Additional mutations were detected in the intergenic spacer regions between genes encoding a GGDEF protein and fumarate dehydratase, and in genes of unknown function. The mutants in the ABC transporters did not display reduced root colonization. However, the other mutants had up to 100-fold reduced colonization levels. Generally the production of metabolites important for interactions in the rhizosphere, phenazines and siderophores, was not altered by the mutations. A reduced induction of systemic resistance by a purine biosynthesis mutant with a disrupted purM gene correlated with poor growth rate, lesser production of phenazines and siderophore and low levels of root colonization. These studies showed that multiple determinants are involved in the induction of systemic resistance, with there being a requirement for strong root colonization.


Plant and Cell Physiology | 2009

Mitogen-Activated Protein Kinase Cascade in the Signaling for Polyamine Biosynthesis in Tobacco

Eun-Kyoung Jang; Kwang-Hyun Min; Su-Hyun Kim; Seung-Hee Nam; Shuqun Zhang; Young Cheol Kim; Baik Ho Cho; Kwang-Yeol Yang

Expression of NtNEK2(DD), a constitutively active mutant of NtMEK2, activates endogenous salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK), and leads to several stress/defense responses in tobacco. In this study, we used ACP (annealing control primer)-based differential display reverse transcription-PCR to isolate the downstream effectors mediated by the NtMEK2-SIPK/WIPK cascade. The arginine decarboxylase gene (ADC), which is involved in plant putrescine biosynthesis, was one of nine differentially expressed genes. When compared with NtMEK2(KR) plants, NtMEK2(DD) transgenic plants exhibited a significant increase in ADC and ODC (ornithine decarboxylase) transcript levels, as well as in putrescine and its catabolite, gamma-aminobutyric acid, following SIPK/WIPK activation. Taken together, these results suggest that the NtMEK2-SIPK/WIPK cascade is involved in regulating polyamine synthesis, especially putrescine synthesis, through transcriptional regulation of the biosynthetic genes in tobacco.


Biochemical and Biophysical Research Communications | 2013

Putrescine regulating by stress-responsive MAPK cascade contributes to bacterial pathogen defense in Arabidopsis

Su-Hyun Kim; Sun-Hwa Kim; Seung-Jin Yoo; Kwang-Hyun Min; Seung-Hee Nam; Baik Ho Cho; Kwang-Yeol Yang

Polyamines in plants are involved in various physiological and developmental processes including abiotic and biotic stress responses. We investigated the expression of ADCs, which are key enzymes in putrescine (Put) biosynthesis, and roles of Put involving defense response in Arabidopsis. The increased expression of ADC1 and ADC2, and the induction of Put were detected in GVG-NtMEK2(DD) transgenic Arabidopsis, whereas, their performance was partially compromised in GVG-NtMEK2(DD)/mpk3 and GVG-NtMEK2(DD)/mpk6 mutant following DEX treatment. The expression of ADC2 was highly induced by Pst DC3000 inoculation, while the transcript levels of ADC1 were slightly up-regulated. Compared to the WT plant, Put content in the adc2 knock-out mutant was reduced after Pst DC3000 inoculation, and showed enhanced susceptibility to pathogen infection. The adc2 mutant exhibited reduced expression of PR-1 after bacterial infection and the growth of the pathogen was about 4-fold more than that in the WT plant. Furthermore, the disease susceptibility of the adc2 mutant was recovered by the addition of exogenous Put. Taken together, these results suggest that Arabidopsis MPK3 and MPK6 play a positive role in the regulation of Put biosynthesis, and that Put contributes to bacterial pathogen defense in Arabidopsis.


Molecular Breeding | 2002

Multiple virus resistance in transgenic plants conferred by the human dsRNA-dependent protein kinase

Pyung Ok Lim; Ung Lee; Jong Sang Ryu; Jang Kyung Choi; Ara G. Hovanessian; Cheol Soo Kim; Baik Ho Cho; Hong Gil Nam

We have developed a new strategy for engineering resistance to multipleviruses in plants. The strategy exploits the human double stranded (ds)RNA-dependent protein kinase (PKR). PKR is one of theinterferon-induced enzymes. It confers viral resistance in mammals byinhibitingviral replication through the inactivation of the translational initiationfactor, eIF-2α, upon activation by dsRNA. The humanPKR gene was fused to the promoter of theArabidopsis blue copper binding protein gene(BCB) that is induced rapidly in response to wounding. Thechimeric gene cassette was introduced into tobacco plants. Expression of thePKR gene in transgenic tobacco plants was demonstrated byRNA gel blot analysis and autophosphorylation assay of anMr 68,000 protein. The transgenic plantsexpressing the PKR gene showed significantly reduced viralsymptoms or no viral symptoms at all, when challenged by different plant RNAviruses, such as Cucumber mosaic virus, Tobaccoetch virus, or Potato virus Y. Thus, expressionof a single component in the human interferon pathway, thePKR gene, can effectively confer resistance to multipleviruses in transgenic plants.

Collaboration


Dive into the Baik Ho Cho's collaboration.

Top Co-Authors

Avatar

Young Cheol Kim

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Kwang Yeol Yang

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Kwang-Yeol Yang

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myung Chul Lee

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

Yang Ju Im

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Gap Chae Chung

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Kwang-Hyun Min

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Song Mi Cho

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Beom Ryong Kang

Chonnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge