Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bailey C. McMeans is active.

Publication


Featured researches published by Bailey C. McMeans.


Ecology Letters | 2014

Rescaling the trophic structure of marine food webs.

Nigel E. Hussey; M. Aaron MacNeil; Bailey C. McMeans; Jill A. Olin; Sheldon F. J. Dudley; Geremy Cliff; Sabine P. Wintner; Sean T. Fennessy; Aaron T. Fisk

Measures of trophic position (TP) are critical for understanding food web interactions and human-mediated ecosystem disturbance. Nitrogen stable isotopes (δ15N) provide a powerful tool to estimate TP but are limited by a pragmatic assumption that isotope discrimination is constant (change in δ15N between predator and prey, Δ15N = 3.4‰), resulting in an additive framework that omits known Δ15N variation. Through meta-analysis, we determine narrowing discrimination from an empirical linear relationship between experimental Δ15N and δ15N values of prey consumed. The resulting scaled Δ15N framework estimated reliable TPs of zooplanktivores to tertiary piscivores congruent with known feeding relationships that radically alters the conventional structure of marine food webs. Apex predator TP estimates were markedly higher than currently assumed by whole-ecosystem models, indicating perceived food webs have been truncated and species-interactions over simplified. The scaled Δ15N framework will greatly improve the accuracy of trophic estimates widely used in ecosystem-based management.


Journal of Fish Biology | 2012

Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions.

Nigel E. Hussey; M. A. MacNeil; Jill A. Olin; Bailey C. McMeans; Michael J. Kinney; Demian D. Chapman; Aaron T. Fisk

Stable-isotope analysis (SIA) can act as a powerful ecological tracer with which to examine diet, trophic position and movement, as well as more complex questions pertaining to community dynamics and feeding strategies or behaviour among aquatic organisms. With major advances in the understanding of the methodological approaches and assumptions of SIA through dedicated experimental work in the broader literature coupled with the inherent difficulty of studying typically large, highly mobile marine predators, SIA is increasingly being used to investigate the ecology of elasmobranchs (sharks, skates and rays). Here, the current state of SIA in elasmobranchs is reviewed, focusing on available tissues for analysis, methodological issues relating to the effects of lipid extraction and urea, the experimental dynamics of isotopic incorporation, diet-tissue discrimination factors, estimating trophic position, diet and mixing models and individual specialization and niche-width analyses. These areas are discussed in terms of assumptions made when applying SIA to the study of elasmobranch ecology and the requirement that investigators standardize analytical approaches. Recommendations are made for future SIA experimental work that would improve understanding of stable-isotope dynamics and advance their application in the study of sharks, skates and rays.


Journal of Fish Biology | 2012

Biology of the Greenland shark Somniosus microcephalus

M. A. MacNeil; Bailey C. McMeans; Nigel E. Hussey; Paul Vecsei; Jörundur Svavarsson; Kit M. Kovacs; Christian Lydersen; M. A. Treble; G. B. Skomal; M. Ramsey; Aaron T. Fisk

Greenland shark Somniosus microcephalus is a potentially important yet poorly studied cold-water species inhabiting the North Atlantic and Arctic Oceans. Broad-scale changes in the Arctic ecosystem as a consequence of climate change have led to increased attention on trophic dynamics and the role of potential apex predators such as S. microcephalus in the structure of Arctic marine food webs. Although Nordic and Inuit populations have caught S. microcephalus for centuries, the species is of limited commercial interest among modern industrial fisheries. Here, the limited historical information available on S. microcephalus occurrence and ecology is reviewed and new catch, biological and life-history information from the Arctic and North Atlantic Ocean region is provided. Given the considerable by-catch rates in high North Atlantic Ocean latitudes it is suggested that S. microcephalus is an abundant predator that plays an important, yet unrecognized, role in Arctic marine ecosystems. Slow growth and large pup sizes, however, may make S. microcephalus vulnerable to increased fishing pressure in a warming Arctic environment.


Science of The Total Environment | 2015

Mercury in the marine environment of the Canadian Arctic: Review of recent findings

Birgit M. Braune; John Chételat; Marc Amyot; Tanya M. Brown; Meredith G. Clayden; Marlene Evans; Aaron T. Fisk; Ashley Gaden; Catherine Girard; Alex Hare; Jane L. Kirk; Igor Lehnherr; Robert J. Letcher; Lisa L. Loseto; Robie W. Macdonald; Erin Mann; Bailey C. McMeans; Derek C. G. Muir; Nelson J. O'Driscoll; Alexandre J. Poulain; Kenneth J. Reimer; Gary A. Stern

This review summarizes data and information which have been generated on mercury (Hg) in the marine environment of the Canadian Arctic since the previous Canadian Arctic Contaminants Assessment Report (CACAR) was released in 2003. Much new information has been collected on Hg concentrations in marine water, snow and ice in the Canadian Arctic. The first measurements of methylation rates in Arctic seawater indicate that the water column is an important site for Hg methylation. Arctic marine waters were also found to be a substantial source of gaseous Hg to the atmosphere during the ice-free season. High Hg concentrations have been found in marine snow as a result of deposition following atmospheric mercury depletion events, although much of this Hg is photoreduced and re-emitted back to the atmosphere. The most extensive sampling of marine sediments in the Canadian Arctic was carried out in Hudson Bay where sediment total Hg (THg) concentrations were low compared with other marine regions in the circumpolar Arctic. Mass balance models have been developed to provide quantitative estimates of THg fluxes into and out of the Arctic Ocean and Hudson Bay. Several recent studies on Hg biomagnification have improved our understanding of trophic transfer of Hg through marine food webs. Over the past several decades, Hg concentrations have increased in some marine biota, while other populations showed no temporal change. Marine biota also exhibited considerable geographic variation in Hg concentrations with ringed seals, beluga and polar bears from the Beaufort Sea region having higher Hg concentrations compared with other parts of the Canadian Arctic. The drivers of these variable patterns of Hg bioaccumulation, both regionally and temporally, within the Canadian Arctic remain unclear. Further research is needed to identify the underlying processes including the interplay between biogeochemical and food web processes and climate change.


Canadian Journal of Fisheries and Aquatic Sciences | 2010

Diet and resource use among Greenland sharks (Somniosus microcephalus) and teleosts sampled in Icelandic waters, using δ13C, δ15N, and mercury.

Bailey C. McMeans; Jörundur Svavarsson; Susan DennardS. Dennard; Aaron T. Fisk

Stable carbon (δ13C) and nitrogen (δ15N) isotopes and total mercury (Hg) were used to investigate diet and resource use among Greenland sharks (Somniosus microcephalus) and 14 teleosts inhabiting Icelandic waters. Greenland shark stomachs contained 11 of the teleosts sampled, along with other fishes and marine mammal tissues. Teleost resource use ranged from pelagic (e.g., Argentina silus) to benthic (e.g., Anarhichas lupus) based on δ13C, and relative trophic positions (TP, based on δ15N) ranged from 3.0 (Mallotus villosus) to 3.8 (e.g., Brosme brosme). Greenland shark δ13C indicated feeding on benthic and pelagic resources, with a high input of pelagic carbon, and δ15N indicated a relative TP of 4.3. Log[Hg] increased with δ15N (i.e., TP) from teleosts to Greenland sharks and was higher in offshore vs. inshore teleosts. Linear regressions revealed that log[Hg] was better described by both δ15N and δ13C-assigned resource use than by δ15N alone. Hg was useful for supporting the TPs suggested by δ15N, and ...


Environmental Science & Technology | 2012

Trophic Transfer of Contaminants in a Changing Arctic Marine Food Web: Cumberland Sound, Nunavut, Canada

Melissa A. McKinney; Bailey C. McMeans; Gregg T. Tomy; Bruno Rosenberg; Steven H. Ferguson; Adam Morris; Derek C. G. Muir; Aaron T. Fisk

Contaminant dynamics in arctic marine food webs may be impacted by current climate-induced food web changes including increases in transient/subarctic species. We quantified food web organochlorine transfer in the Cumberland Sound (Nunavut, Canada) arctic marine food web in the presence of transient species using species-specific biomagnification factors (BMFs), trophic magnification factors (TMFs), and a multifactor model that included δ(15)N-derived trophic position and species habitat range (transient versus resident), and also considered δ(13)C-derived carbon source, thermoregulatory group, and season. Transient/subarctic species relative to residents had higher prey-to-predator BMFs of biomagnifying contaminants (1.4 to 62 for harp seal, Greenland shark, and narwhal versus 1.1 to 20 for ringed seal, arctic skate, and beluga whale, respectively). For contaminants that biomagnified in a transient-and-resident food web and a resident-only food web scenario, TMFs were higher in the former (2.3 to 10.1) versus the latter (1.7 to 4.0). Transient/subarctic species have higher tissue contaminant levels and greater BMFs likely due to higher energetic requirements associated with long-distance movements or consumption of more contaminated prey in regions outside of Cumberland Sound. These results demonstrate that, in addition to climate change-related long-range transport/deposition/revolatilization changes, increasing numbers of transient/subarctic animals may alter food web contaminant dynamics.


Polar Biology | 2009

Preliminary assessment of Greenland halibut diet in Cumberland Sound using stable isotopes

Susan T. Dennard; Bailey C. McMeans; Aaron T. Fisk

We provide preliminary carbon (δ13C) and nitrogen (δ15N) stable isotope assessment of the Greenland halibut (Reinhardtius hippoglossoides) diet in Cumberland Sound, with focus on two possible prey sources: pelagic represented by capelin (Mallotus villosus) and epibenthic represented by shrimp (Lebbeus polaris). The δ13C for the Greenland halibut stock indicated a pelagic carbon source in Cumberland Sound while stable isotope mixing models, IsoSource and MixSIR, indicated a 99% dietary composition of capelin relative to the shrimp. The δ15N did not vary across Greenland halibut size ranges and placed them at a fourth trophic position relative to a primary herbivore. This study provides the starting point for more elaborate Cumberland Sound research on the local Greenland halibut feeding ecology by confirming pelagic feeding and establishing relative trophic position as well as identifying stable isotopes as a useful tool for the study of diet in cold water fish species.


Science of The Total Environment | 2015

Impacts of food web structure and feeding behavior on mercury exposure in Greenland Sharks (Somniosus microcephalus)

Bailey C. McMeans; Michael T. Arts; Aaron T. Fisk

Benthic and pelagic food web components in Cumberland Sound, Canada were explored as sources of total mercury (THg) to Greenland Sharks (Somniosus microcephalus) via both bottom-up food web transfer and top-down shark feeding behavior. Log10THg increased significantly with δ(15)N and trophic position from invertebrates (0.01 ± 0.01 μg · g(-1) [113 ± 1 ng · g(-1)] dw in copepods) to Greenland Sharks (3.54 ± 1.02 μg · g(-1)). The slope of the log10THg vs. δ(15)N linear regression was higher for pelagic compared to benthic food web components (excluding Greenland Sharks, which could not be assigned to either food web), which resulted from THg concentrations being higher at the base of the benthic food web (i.e., in benthic than pelagic primary consumers). However, feeding habitat is unlikely to consistently influence shark THg exposure in Cumberland Sound because THg concentrations did not consistently differ between benthic and pelagic shark prey. Further, size, gender and feeding behavior (inferred from stable isotopes and fatty acids) were unable to significantly explain THg variability among individual Greenland Sharks. Possible reasons for this result include: 1) individual sharks feeding as generalists, 2) high overlap in THg among shark prey, and 3) differences in turnover time between ecological tracers and THg. This first assessment of Greenland Shark THg within an Arctic food web revealed high concentrations consistent with biomagnification, but low ability to explain intra-specific THg variability. Our findings of high THg levels and consumption of multiple prey types, however, suggest that Greenland Sharks acquire THg through a variety of trophic pathways and are a significant contributor to the total biotic THg pool in northern seas.


Environmental Toxicology and Chemistry | 2016

Current-use pesticides in seawater and their bioaccumulation in polar bear-ringed seal food chains of the Canadian Arctic.

Adam Morris; Derek C. G. Muir; Keith R. Solomon; Robert J. Letcher; Melissa A. McKinney; Aaron T. Fisk; Bailey C. McMeans; Gregg T. Tomy; Camilla Teixeira; Xiaowa Wang; Mark Duric

The distribution of current-use pesticides (CUPs) in seawater and their trophodynamics were investigated in 3 Canadian Arctic marine food chains. The greatest ranges of dissolved-phase concentrations in seawater for each CUP were endosulfan sulfate (less than method detection limit (MDL) to 19 pg L(-1) ) > dacthal (0.76-15 pg L(-1) ) > chlorpyrifos (less than MDL to 8.1 pg L(-1) ) > pentachloronitrobenzene (less than MDL to 2.6 pg L(-1) ) > α-endosulfan (0.20-2.3 pg L(-1) ). Bioaccumulation factors (BAFs, water-respiring organisms) were greatest in plankton, including chlorothalonil (log BAF = 7.4 ± 7.1 L kg(-1) , mean ± standard error), chlorpyrifos (log BAF = 6.9 ± 6.7 L kg(-1) ), and α-endosulfan (log BAF = 6.5 ± 6.0 L kg(-1) ). The largest biomagnification factors (BMFs) were found for dacthal in the capelin:plankton trophic relationship (BMF = 13 ± 5.0) at Cumberland Sound (Nunvavut), and for β-endosulfan (BMF = 16 ± 4.9) and α-endosulfan (BMF = 9.3 ± 2.8) in the polar bear-ringed seal relationship at Barrow and Rae Strait (NU), respectively. Concentrations of endosulfan sulfate exhibited trophic magnification (increasing concentrations with increasing trophic level) in the poikilothermic portion of the food web (trophic magnification factor = 1.4), but all of the CUPs underwent trophic dilution in the marine mammal food web, despite some trophic level-specific biomagnification. Together, these observations are most likely indicative of metabolism of these CUPs in mammals. Environ Toxicol Chem 2016;35:1695-1707.


Environmental Pollution | 2014

Temporal and spatial variation in polychlorinated biphenyl chiral signatures of the Greenland shark (Somniosus microcephalus) and its arctic marine food web

Zhe Lu; Aaron T. Fisk; Kit M. Kovacs; Christian Lydersen; Melissa A. McKinney; Gregg T. Tomy; Bruno Rosenburg; Bailey C. McMeans; Derek C. G. Muir; Charles S. Wong

Polychlorinated biphenyls (PCBs) chiral signatures were measured in Greenland sharks (Somniosus microcephalus) and their potential prey in arctic marine food webs from Canada (Cumberland Sound) and Europe (Svalbard) to assess temporal and spatial variation in PCB contamination at the stereoisomer level. Marine mammals had species-specific enantiomer fractions (EFs), likely due to a combination of in vivo biotransformation and direct trophic transfer. Greenland sharks from Cumberland Sound in 2007-2008 had similar EFs to those sharks collected a decade ago in the same location (PCBs 91, 136 and 149) and also similar to their conspecifics from Svalbard for some PCB congeners (PCBs 95, 136 and 149). However, other PCB EFs in the sharks varied temporally (PCB 91) or spatially (PCB 95), suggesting a possible spatiotemporal variation in their diets, since biotransformation capacity was unlikely to have varied within this species from region to region or over the time frame studied.

Collaboration


Dive into the Bailey C. McMeans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael T. Arts

National Water Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabine P. Wintner

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kit M. Kovacs

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar

Geremy Cliff

University of KwaZulu-Natal

View shared research outputs
Researchain Logo
Decentralizing Knowledge