Bailin Deng
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bailin Deng.
international conference on computer graphics and interactive techniques | 2014
Akash Garg; Andrew O. Sageman-Furnas; Bailin Deng; Yonghao Yue; Eitan Grinspun; Mark Pauly; Max Wardetzky
We present a computational approach for designing wire meshes, i.e., freeform surfaces composed of woven wires arranged in a regular grid. To facilitate shape exploration, we map material properties of wire meshes to the geometric model of Chebyshev nets. This abstraction is exploited to build an efficient optimization scheme. While the theory of Chebyshev nets suggests a highly constrained design space, we show that allowing controlled deviations from the underlying surface provides a rich shape space for design exploration. Our algorithm balances globally coupled material constraints with aesthetic and geometric design objectives that can be specified by the user in an interactive design session. In addition to sculptural art, wire meshes represent an innovative medium for industrial applications including composite materials and architectural façades. We demonstrate the effectiveness of our approach using a variety of digital and physical prototypes with a level of shape complexity unobtainable using previous methods.
international conference on computer graphics and interactive techniques | 2010
Helmut Pottmann; Qixing Huang; Bailin Deng; Alexander Schiftner; Martin Kilian; Leonidas J. Guibas; Johannes Wallner
Geodesic curves in surfaces are not only minimizers of distance, but they are also the curves of zero geodesic (sideways) curvature. It turns out that this property makes patterns of geodesics the basic geometric entity when dealing with the cladding of a freeform surface with wooden panels which do not bend sideways. Likewise a geodesic is the favored shape of timber support elements in freeform architecture, for reasons of manufacturing and statics. Both problem areas are fundamental in freeform architecture, but so far only experimental solutions have been available. This paper provides a systematic treatment and shows how to design geodesic patterns in different ways: The evolution of geodesic curves is good for local studies and simple patterns; the level set formulation can deal with the global layout of multiple patterns of geodesics; finally geodesic vector fields allow us to interactively model geodesic patterns and perform surface segmentation into panelizable parts.
Computer Graphics Forum | 2015
Wangyu Zhang; Bailin Deng; Juyong Zhang; Sofien Bouaziz; Ligang Liu
The joint bilateral filter is a variant of the standard bilateral filter, where the range kernel is evaluated using a guidance signal instead of the original signal. It has been successfully applied to various image processing problems, where it provides more flexibility than the standard bilateral filter to achieve high quality results. On the other hand, its success is heavily dependent on the guidance signal, which should ideally provide a robust estimation about the features of the output signal. Such a guidance signal is not always easy to construct. In this paper, we propose a novel mesh normal filtering framework based on the joint bilateral filter, with applications in mesh denoising. Our framework is designed as a two‐stage process: first, we apply joint bilateral filtering to the face normals, using a properly constructed normal field as the guidance; afterwards, the vertex positions are updated according to the filtered face normals. We compute the guidance normal on a face using a neighboring patch with the most consistent normal orientations, which provides a reliable estimation of the true normal even with a high‐level of noise. The effectiveness of our approach is validated by extensive experimental results.
Computer-aided Design | 2015
Bailin Deng; Sofien Bouaziz; Mario Deuss; Alexandre Kaspar; Yuliy Schwartzburg; Mark Pauly
In architectural design, surface shapes are commonly subject to geometric constraints imposed by material, fabrication or assembly. Rationalization algorithms can convert a freeform design into a form feasible for production, but often require design modifications that might not comply with the design intent. In addition, they only offer limited support for exploring alternative feasible shapes, due to the high complexity of the optimization algorithm.We address these shortcomings and present a computational framework for interactive shape exploration of discrete geometric structures in the context of freeform architectural design. Our method is formulated as a mesh optimization subject to shape constraints. Our formulation can enforce soft constraints and hard constraints at the same time, and handles equality constraints and inequality constraints in a unified way. We propose a novel numerical solver that splits the optimization into a sequence of simple subproblems that can be solved efficiently and accurately.Based on this algorithm, we develop a system that allows the user to explore designs satisfying geometric constraints. Our system offers full control over the exploration process, by providing direct access to the specification of the design space. At the same time, the complexity of the underlying optimization is hidden from the user, who communicates with the system through intuitive interfaces. A general optimization framework for deforming meshes under constraints.Soft constraints and hard constraints are handled in a unified way.An efficient parallel solver suitable for interactive applications.A system for exploring the feasible shapes of constrained meshes in real time.
international conference on computer graphics and interactive techniques | 2016
Mina Konaković; Keenan Crane; Bailin Deng; Sofien Bouaziz; Daniel Piker; Mark Pauly
We present a computational method for interactive 3D design and rationalization of surfaces via auxetic materials, i.e., flat flexible material that can stretch uniformly up to a certain extent. A key motivation for studying such material is that one can approximate doubly-curved surfaces (such as the sphere) using only flat pieces, making it attractive for fabrication. We physically realize surfaces by introducing cuts into approximately inextensible material such as sheet metal, plastic, or leather. The cutting pattern is modeled as a regular triangular linkage that yields hexagonal openings of spatially-varying radius when stretched. In the same way that isometry is fundamental to modeling developable surfaces, we leverage conformal geometry to understand auxetic design. In particular, we compute a global conformal map with bounded scale factor to initialize an otherwise intractable non-linear optimization. We demonstrate that this global approach can handle non-trivial topology and non-local dependencies inherent in auxetic material. Design studies and physical prototypes are used to illustrate a wide range of possible applications.
eurographics | 2013
Bailin Deng; Sofien Bouaziz; Mario Deuss; Juyong Zhang; Yuliy Schwartzburg; Mark Pauly
Mesh editing under constraints is a challenging task with numerous applications in geometric modeling, industrial design, and architectural form finding. Recent methods support constraint‐based exploration of meshes with fixed connectivity, but commonly lack local control. Because constraints are often globally coupled, a local modification by the user can have global effects on the surface, making iterative design exploration and refinement difficult. Simply fixing a local region of interest a priori is problematic, as it is not clear in advance which parts of the mesh need to be modified to obtain an aesthetically pleasing solution that satisfies all constraints. We propose a novel framework for exploring local modifications of constrained meshes. Our solution consists of three steps. First, a user specifies target positions for one or more vertices. Our algorithm computes a sparse set of displacement vectors that satisfies the constraints and yields a smooth deformation. Then we build a linear subspace to allow realtime exploration of local variations that satisfy the constraints approximately. Finally, after interactive exploration, the result is optimized to fully satisfy the set of constraints. We evaluate our framework on meshes where each face is constrained to be planar.
international conference on computer graphics and interactive techniques | 2016
Peng Song; Bailin Deng; Ziqi Wang; Zhichao Dong; Wei Li; Chi-Wing Fu; Ligang Liu
This paper presents CofiFab, a coarse-to-fine 3D fabrication solution, combining 3D printing and 2D laser cutting for cost-effective fabrication of large objects at lower cost and higher speed. Our key approach is to first build coarse internal base structures within the given 3D object using laser cutting, and then attach thin 3Dprinted parts, as an external shell, onto the base to recover the fine surface details. CofiFab achieves this with three novel algorithmic components. First, we formulate an optimization model to compute fabricatable polyhedrons of maximized volume, as the geometry of the internal base. Second, we devise a new interlocking scheme to tightly connect the laser-cut parts into a strong internal base, by iteratively building a network of nonorthogonal joints and interlocking parts around polyhedral corners. Lastly, we optimize the partitioning of the external object shell into 3D-printable parts, while saving support material and avoiding overhangs. Besides cost saving, these components also consider aesthetics, stability and balancing. Hence, CofiFab can efficiently produce large objects by assembly. To evaluate CofiFab, we fabricate objects of varying shapes and sizes, and show that CofiFab can significantly outperform previous methods.This paper presents CofiFab, a coarse-to-fine 3D fabrication solution, combining 3D printing and 2D laser cutting for cost-effective fabrication of large objects at lower cost and higher speed. Our key approach is to first build coarse internal base structures within the given 3D object using laser cutting, and then attach thin 3D-printed parts, as an external shell, onto the base to recover the fine surface details. CofiFab achieves this with three novel algorithmic components. First, we formulate an optimization model to compute fabricatable polyhedrons of maximized volume, as the geometry of the internal base. Second, we devise a new interlocking scheme to tightly connect the laser-cut parts into a strong internal base, by iteratively building a network of nonorthogonal joints and interlocking parts around polyhedral corners. Lastly, we optimize the partitioning of the external object shell into 3D-printable parts, while saving support material and avoiding overhangs. Besides cost saving, these components also consider aesthetics, stability and balancing. Hence, CofiFab can efficiently produce large objects by assembly. To evaluate CofiFab, we fabricate objects of varying shapes and sizes, and show that CofiFab can significantly outperform previous methods.
Computer-aided Design | 2014
Qiang Zou; Juyong Zhang; Bailin Deng; Jibin Zhao
The aim of tool path planning is to maximize the efficiency against some given precision criteria. In practice, scallop height should be kept constant to avoid unnecessary cutting, while the tool path should be smooth enough to maintain a high feed rate. However, iso-scallop and smoothness often conflict with each other. Existing methods smooth iso-scallop paths one-by-one, which make the final tool path far from being globally optimal. This paper proposes a new framework for tool path optimization. It views a family of iso-level curves of a scalar function defined over the surface as tool path so that desired tool path can be generated by finding the function that minimizes certain energy functional and different objectives can be considered simultaneously. We use the framework to plan globally optimal tool path with respect to iso-scallop and smoothness. The energy functionals for planning iso-scallop, smoothness, and optimal tool path are respectively derived, and the path topology is studied too. Experimental results are given to show effectiveness of the proposed methods.
international conference on computer graphics and interactive techniques | 2014
Juyong Zhang; Bailin Deng; Zishun Liu; Giuseppe Patanè; Sofien Bouaziz; Kai Hormann; Ligang Liu
Barycentric coordinates yield a powerful and yet simple paradigm to interpolate data values on polyhedral domains. They represent interior points of the domain as an affine combination of a set of control points, defining an interpolation scheme for any function defined on a set of control points. Numerous barycentric coordinate schemes have been proposed satisfying a large variety of properties. However, they typically define interpolation as a combination of all control points. Thus a local change in the value at a single control point will create a global change by propagation into the whole domain. In this context, we present a family of local barycentric coordinates (LBC), which select for each interior point a small set of control points and satisfy common requirements on barycentric coordinates, such as linearity, non-negativity, and smoothness. LBC are achieved through a convex optimization based on total variation, and provide a compact representation that reduces memory footprint and allows for fast deformations. Our experiments show that LBC provide more local and finer control on shape deformation than previous approaches, and lead to more intuitive deformation results.
symposium on geometry processing | 2011
Bailin Deng; Helmut Pottmann; Johannes Wallner
Rationalization and construction‐aware design dominate the issue of realizability of freeform architecture. The former means the decomposition of an intended shape into parts which are sufficiently simple and efficient to manufacture; the latter refers to a design procedure which already incorporates rationalization. Recent contributions to this topic have been concerned mostly with small‐scale parts, for instance with planar faces of meshes. The present paper deals with another important aspect, namely long‐range parts and supporting structures. It turns out that from the pure geometry viewpoint this means studying families of curves which cover surfaces in certain well‐defined ways. Depending on the application one has in mind, different combinatorial arrangements of curves are required. We here restrict ourselves to so‐called hexagonal webs which correspond to a triangular or tri‐hex decomposition of a surface. The individual curve may have certain special properties, like being planar, being a geodesic, or being part of a circle. Each of these properties is motivated by manufacturability considerations and imposes constraints on the shape of the surface. We investigate the available degrees of freedom, show numerical methods of optimization, and demonstrate the effectivity of our approach and the variability of construction solutions derived from webs by means of actual architectural designs.?