Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bailong Xiao is active.

Publication


Featured researches published by Bailong Xiao.


Nature | 2012

Piezo proteins are pore-forming subunits of mechanically activated channels

Bertrand Coste; Bailong Xiao; Jose S. Santos; Ruhma Syeda; Jörg Grandl; Kathryn Spencer; Sung Eun Kim; Manuela Schmidt; Jayanti Mathur; Adrienne E. Dubin; Mauricio Montal; Ardem Patapoutian

Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.


Circulation Research | 2005

Enhanced Store Overload-Induced Ca2+ Release and Channel Sensitivity to Luminal Ca2+ Activation are Common Defects of RyR2 Mutations Linked to Ventricular Tachycardia and Sudden Death

Dawei Jiang; Ruiwu Wang; Bailong Xiao; Huihui Kong; Donald J. Hunt; Philip Choi; Lin Zhang; S. R. Wayne Chen

Ventricular tachycardia (VT) is the leading cause of sudden death, and the cardiac ryanodine receptor (RyR2) is emerging as an important focus in its pathogenesis. RyR2 mutations have been linked to VT and sudden death, but their precise impacts on channel function remain largely undefined and controversial. We have previously shown that several disease-linked RyR2 mutations in the C-terminal region enhance the sensitivity of the channel to activation by luminal Ca2+. Cells expressing these RyR2 mutants display an increased propensity for spontaneous Ca2+ release under conditions of store Ca2+ overload, a process we referred to as store overload–induced Ca2+ release (SOICR). To determine whether common defects exist in disease-linked RyR2 mutations, we characterized 6 more RyR2 mutations from different regions of the channel. Stable inducible HEK293 cell lines expressing Q4201R and I4867M from the C-terminal region, S2246L and R2474S from the central region, and R176Q(T2504M) and L433P from the N-terminal region were generated. All of these cell lines display an enhanced propensity for SOICR. HL-1 cardiac cells transfected with disease-linked RyR2 mutations also exhibit increased SOICR activity. Single channel analyses reveal that disease-linked RyR2 mutations primarily increase the channel sensitivity to luminal, but not to cytosolic, Ca2+ activation. Moreover, the Ca2+ dependence of [3H]ryanodine binding to RyR2 wild type and mutants is similar. In contrast to previous reports, we found no evidence that disease-linked RyR2 mutations alter the FKBP12.6–RyR2 interaction. Our data indicate that enhanced SOICR activity and luminal Ca2+ activation represent common defects of RyR2 mutations associated with VT and sudden death. A mechanistic model for CPVT/ARVD2 is proposed.


The Journal of Neuroscience | 2007

An Ion Channel Essential for Sensing Chemical Damage

Lindsey J. Macpherson; Bailong Xiao; Kelvin Y. Kwan; Matt J. Petrus; Adrienne E. Dubin; Sun Wook Hwang; Benjamin F. Cravatt; David P. Corey; Ardem Patapoutian

Tissue damage and its downstream consequences are experimentally assayed by formaldehyde application, which indiscriminately modifies proteins and is presumed to cause pain through broadly acting mechanisms. Here we show that formaldehyde activates the ion channel TRPA1 and that TRPA1-deficient mice exhibit dramatically reduced formaldehyde-induced pain responses. 4-Hydroxynonenal, a reactive chemical produced endogenously during oxidative stress, and other related aldehydes also activate TRPA1 in vitro. Furthermore, painful responses to iodoacetamide, a nonspecific cysteine-alkylating compound, are abolished in TRPA1-deficient mice. Therefore, although these reactive chemicals modify many proteins, the associated pain appears mainly dependent on a single ion channel.


The Journal of Neuroscience | 2008

Identification of Transmembrane Domain 5 as a Critical Molecular Determinant of Menthol Sensitivity in Mammalian TRPA1 Channels

Bailong Xiao; Adrienne E. Dubin; Badry Bursulaya; Veena Viswanath; Timothy Jegla; Ardem Patapoutian

TRPA1 is a member of the transient receptor potential (TRP) family of ion channels and is expressed in a subset of nociceptive neurons. An increasing body of evidence suggests that TRPA1 functions as a chemical nocisensor for a variety of reactive chemicals, such as pungent natural compounds and environmental irritants. Activation of TRPA1 by reactive compounds has been demonstrated to be mediated through covalent modification of cytoplasmic cysteines located in the N terminus of the channel, rather than classical lock-and-key binding. TRPA1 activity is also modulated by numerous nonreactive chemicals, but the underlying mechanism is unknown. Menthol, a natural nonreactive cooling compound, is best known as an activator of TRPM8, a related TRP ion channel required for cool thermosensation in vivo. More recently, menthol has been shown to be an activator of mouse TRPA1 at low concentrations, and a blocker, at high concentrations. Here, we show that human TRPA1 is only activated by menthol, whereas TRPA1 from nonmammalian species are insensitive to menthol. Mouse-human TRPA1 chimeras reveal the pore region [including transmembrane domain 5 (TM5) and TM6] as the critical domain determining whether menthol can act as an inhibitor. Furthermore, chimeras between Drosophila melanogaster and mammalian TRPA1 highlight specific residues within TM5 critical for menthol responsiveness. Interestingly, this TM5 region also determines the sensitivity of TRPA1 to other chemical modulators. These data suggest separable structural requirements for modulation of TRPA1 by covalent and nonreactive molecules. Whether this region is involved in binding or gating of TRPA1 channels is discussed.


Circulation Research | 2002

Enhanced Basal Activity of a Cardiac Ca2+ Release Channel (Ryanodine Receptor) Mutant Associated With Ventricular Tachycardia and Sudden Death

Dawei Jiang; Bailong Xiao; Lin Zhang; S. R. Wayne Chen

Abstract— Mutations in the human cardiac Ca2+ release channel (ryanodine receptor, RyR2) gene have recently been shown to cause effort-induced ventricular arrhythmias. However, the consequences of these disease-causing mutations in RyR2 channel function are unknown. In the present study, we characterized the properties of mutation R4496C of mouse RyR2, which is equivalent to a disease-causing human RyR2 mutation R4497C, by heterologous expression of the mutant in HEK293 cells. [3H]ryanodine binding studies revealed that the R4496C mutation resulted in an increase in RyR2 channel activity in particular at low Ca2+ concentrations. This increased basal channel activity remained sensitive to modulation by caffeine, ATP, Mg2+, and ruthenium red. In addition, the R4496C mutation enhanced the sensitivity of RyR2 to activation by Ca2+ and by caffeine. Single-channel analysis showed that single R4496C mutant channels exhibited considerable channel openings at low Ca2+ concentrations. HEK293 cells transfected with mutant R4496C displayed spontaneous Ca2+ oscillations more frequently than cells transfected with wild-type RyR2. Substitution of a negatively charged glutamate for the positively charged R4496 (R4496E) further enhanced the basal channel activity, whereas replacement of R4496 by a positively charged lysine (R4496K) had no significant effect on the basal activity. These observations indicate that the charge and polarity at residue 4496 plays an essential role in RyR2 channel gating. Enhanced basal activity of RyR2 may underlie an arrhythmogenic mechanism for effort-induced ventricular tachycardia.


Circulation Research | 2005

Characterization of a Novel PKA Phosphorylation Site, Serine-2030, Reveals No PKA Hyperphosphorylation of the Cardiac Ryanodine Receptor in Canine Heart Failure

Bailong Xiao; Ming Tao Jiang; Mingcai Zhao; Dongmei Yang; Cindy Sutherland; F. Anthony Lai; Michael P. Walsh; David C. Warltier; Heping Cheng; S. R. Wayne Chen

Hyperphosphorylation of the cardiac Ca2+ release channel (ryanodine receptor, RyR2) by protein kinase A (PKA) at serine-2808 has been proposed to be a key mechanism responsible for cardiac dysfunction in heart failure (HF). However, the sites of PKA phosphorylation in RyR2 and their phosphorylation status in HF are not well defined. Here we used various approaches to investigate the phosphorylation of RyR2 by PKA. Mutating serine-2808, which was thought to be the only PKA phosphorylation site in RyR2, did not abolish the phosphorylation of RyR2 by PKA. Two-dimensional phosphopeptide mapping revealed two major PKA phosphopeptides, one of which corresponded to the known serine-2808 site. Another, novel, PKA phosphorylation site, serine 2030, was identified by Edman sequencing. Using phospho-specific antibodies, we showed that the novel serine-2030 site was phosphorylated in rat cardiac myocytes stimulated with isoproterenol, but not in unstimulated cells, whereas serine-2808 was considerably phosphorylated before and after isoproterenol treatment. We further showed that serine-2030 was stoichiometrically phosphorylated by PKA, but not by CaMKII, and that mutations of serine-2030 altered neither the FKBP12.6-RyR2 interaction nor the Ca2+ dependence of [3H]ryanodine binding. Moreover, the levels of phosphorylation of RyR2 at serine-2030 and serine-2808 in both failing and non-failing canine hearts were similar. Together, our data indicate that serine-2030 is a major PKA phosphorylation site in RyR2 responding to acute β-adrenergic stimulation, and that RyR2 is not hyperphosphorylated by PKA in canine HF.


Circulation Research | 2004

Protein kinase a phosphorylation at serine-2808 of the cardiac Ca2+-release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6)

Bailong Xiao; Cindy Sutherland; Michael P. Walsh; S. R. Wayne Chen

Abstract— Dissociation of FKBP12.6 from the cardiac Ca2+-release channel (RyR2) as a consequence of protein kinase A (PKA) hyperphosphorylation of RyR2 at a single amino acid residue, serine-2808, has been proposed as an important mechanism underlying cardiac dysfunction in heart failure. However, the issue of whether PKA phosphorylation of RyR2 can dissociate FKBP12.6 from RyR2 is controversial. To additionally address this issue, we investigated the effect of PKA phosphorylation and mutations at serine-2808 of RyR2 on recombinant or native FKBP12.6-RyR2 interaction. Site-specific antibodies, which recognize the serine-2808 phosphorylated or nonphosphorylated form of RyR2, were used to unambiguously correlate the phosphorylation state of RyR2 at serine-2808 with its ability to bind FKBP12.6. We found that FKBP12.6 can bind to both the serine-2808 phosphorylated and nonphosphorylated forms of RyR2. The S2808D mutant thought to mimic constitutive phosphorylation also retained the ability to bind FKBP12.6. Complete phosphorylation at serine-2808 by exogenous PKA disrupted neither the recombinant nor native FKBP12.6-RyR2 complex. Furthermore, binding of site-specific antibodies to the serine-2808 phosphorylation site did not dissociate FKBP12.6 from or prevent FKBP12.6 from binding to RyR2. Taken together, our results do not support the notion that PKA phosphorylation at serine-2808 dissociates FKBP12.6 from RyR2.


Biochemical Journal | 2006

Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon β-adrenergic stimulation in normal and failing hearts

Bailong Xiao; Guofeng Zhong; Masakazu Obayashi; Dongmei Yang; Keyun Chen; Michael P. Walsh; Yakhin Shimoni; Heping Cheng; Henk E.D.J. ter Keurs; S. R. Wayne Chen

We have recently shown that RyR2 (cardiac ryanodine receptor) is phosphorylated by PKA (protein kinase A/cAMP-dependent protein kinase) at two major sites, Ser-2030 and Ser-2808. In the present study, we examined the properties and physiological relevance of phosphorylation of these two sites. Using site- and phospho-specific antibodies, we demonstrated that Ser-2030 of both recombinant and native RyR2 from a number of species was phosphorylated by PKA, indicating that Ser-2030 is a highly conserved PKA site. Furthermore, we found that the phosphorylation of Ser-2030 responded to isoproterenol (isoprenaline) stimulation in rat cardiac myocytes in a concentration- and time-dependent manner, whereas Ser-2808 was already substantially phosphorylated before beta-adrenergic stimulation, and the extent of the increase in Ser-2808 phosphorylation after beta-adrenergic stimulation was much less than that for Ser-2030. Interestingly, the isoproterenol-induced phosphorylation of Ser-2030, but not of Ser-2808, was markedly inhibited by PKI, a specific inhibitor of PKA. The basal phosphorylation of Ser-2808 was also insensitive to PKA inhibition. Moreover, Ser-2808, but not Ser-2030, was stoichiometrically phosphorylated by PKG (protein kinase G). In addition, we found no significant phosphorylation of RyR2 at the Ser-2030 PKA site in failing rat hearts. Importantly, isoproterenol stimulation markedly increased the phosphorylation of Ser-2030, but not of Ser-2808, in failing rat hearts. Taken together, these observations indicate that Ser-2030, but not Ser-2808, is the major PKA phosphorylation site in RyR2 responding to PKA activation upon beta-adrenergic stimulation in both normal and failing hearts, and that RyR2 is not hyperphosphorylated by PKA in heart failure. Our results also suggest that phosphorylation of RyR2 at Ser-2030 may be an important event associated with altered Ca2+ handling and cardiac arrhythmia that is commonly observed in heart failure upon beta-adrenergic stimulation.


Nature | 2015

Architecture of the mammalian mechanosensitive Piezo1 channel

Jingpeng Ge; Wanqiu Li; Qiancheng Zhao; Ningning Li; Maofei Chen; Peng Zhi; Ruochong Li; Ning Gao; Bailong Xiao; Maojun Yang

Piezo proteins are evolutionarily conserved and functionally diverse mechanosensitive cation channels. However, the overall structural architecture and gating mechanisms of Piezo channels have remained unknown. Here we determine the cryo-electron microscopy structure of the full-length (2,547 amino acids) mouse Piezo1 (Piezo1) at a resolution of 4.8 Å. Piezo1 forms a trimeric propeller-like structure (about 900 kilodalton), with the extracellular domains resembling three distal blades and a central cap. The transmembrane region has 14 apparently resolved segments per subunit. These segments form three peripheral wings and a central pore module that encloses a potential ion-conducting pore. The rather flexible extracellular blade domains are connected to the central intracellular domain by three long beam-like structures. This trimeric architecture suggests that Piezo1 may use its peripheral regions as force sensors to gate the central ion-conducting pore.


Journal of Biological Chemistry | 2003

Localization of the 12.6-kDa FK506-binding Protein (FKBP12.6) Binding Site to the NH2-terminal Domain of the Cardiac Ca2+ Release Channel (Ryanodine Receptor)

Haruko Masumiya; Ruiwu Wang; Jing Zhang; Bailong Xiao; S. R. Wayne Chen

The 12.6-kDa FK506-binding protein (FKBP12.6) interacts with the cardiac ryanodine receptor (RyR2) and modulates its channel function. However, the molecular basis of FKBP12.6-RyR2 interaction is poorly understood. To investigate the significance of the isoleucine-proline (residues 2427–2428) dipeptide epitope, which is thought to form an essential part of the FKBP12.6 binding site in RyR2, we generated single and double mutants, P2428Q, I2427E/P2428A, and P2428A/L2429E, expressed them in HEK293 cells, and assessed their ability to bind GST-FKBP12.6. None of these mutations abolished GST-FKBP12.6 binding, indicating that this isoleucine-proline motif is unlikely to form the core of the FKBP12.6 binding site in RyR2. To systematically define the molecular determinants of FKBP12.6 binding, we constructed a series of internal and NH2- and COOH-terminal deletion mutants of RyR2 and examined the effect of these deletions on GST-FKBP12.6 binding. These deletion analyses revealed that the first 305 NH2-terminal residues and COOH-terminal residues 1937–4967 are not essential for GST-FKBP12.6 binding, whereas multiple sequences within a large region between residues 305 and 1937 are required for GST-FKBP12.6 interaction. Furthermore, an NH2-terminal fragment containing the first 1937 residues is sufficient for GST-FKBP12.6 binding. Co-expression of overlapping NH2 and COOH-terminal fragments covering the entire sequence of RyR2 produced functional channels but did not restore GST-FKBP12.6 binding. These data suggest that FKBP12.6 binding is likely to be conformationdependent. Binding of FKBP12.6 to the NH2-terminal domain may play a role in stabilizing the conformation of this region.

Collaboration


Dive into the Bailong Xiao's collaboration.

Top Co-Authors

Avatar

Qiancheng Zhao

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar

Ardem Patapoutian

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Shaopeng Chi

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar

Kun Wu

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrienne E. Dubin

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dongmei Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jie Geng

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge