Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baisheng Sa is active.

Publication


Featured researches published by Baisheng Sa.


Computational Materials Science | 2011

Theoretical investigation on the transition-metal borides with Ta3B4-type structure: A class of hard and refractory materials

Naihua Miao; Baisheng Sa; Jian Zhou; Zhimei Sun

Conference Name:19th International Workshop on Computational Mechanics of Materials (IWCMM 19). Conference Address: Constanta, ROMANIA. Time:SEP 01-04, 2009.


Catalysis Science & Technology | 2017

Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective

Yunguo Li; Yan-Ling Li; Baisheng Sa; Rajeev Ahuja

Two-dimensional (2D) materials have shown extraordinary performances as photocatalysts compared to their bulk counterparts. Simulations have made a great contribution to the deep understanding and design of novel 2D photocatalysts. Ab initio simulations based on density functional theory (DFT) not only show efficiency and reliability in new structure searching, but also can provide a reliable, efficient, and economic way for screening the photocatalytic property space. In this review, we summarize the recent developments in the field of water splitting using 2D materials from a theoretical perspective. We address that DFT-based simulations can fast screen the potential spaces of photocatalytic properties with the accuracy comparable to experiments, by investigating the effects of various physical/chemical perturbations. This, at last, will lead to the enhanced photocatalytic activities of 2D materials, and promote the development of photocatalysis.


Journal of Materials Chemistry C | 2017

Strain-mediated type-I/type-II transition in MXene/Blue phosphorene van der Waals heterostructures for flexible optical/electronic devices

Zhonglu Guo; Naihua Miao; Jian Zhou; Baisheng Sa; Zhimei Sun

Development of novel van der Waals (vdW) heterostructures from various two-dimensional (2D) materials shows unprecedented possibilities by combining the advantageous properties of their building layers. In particular, transforming the vdW heterostructures from type-I to type-II is of great interest and importance to achieve efficient charge separation in photocatalytic, photovoltaic, and optoelectronic devices. In this work, by means of ab initio calculations, we have systematically investigated the electronic structures, optical properties, and mechanical properties of MXene/Blue Phosphorene (BlueP) vdW heterostructures under various deformations. We highlight that, under strain, the type-I heterostructures can be transformed to type-II with their conduction band minimum (CBM) and valence band maximum (VBM) separated in different layers. Interestingly, the locations of the CBM or VBM in MXene/BlueP vdW heterostructures can also be reversed by compressive or tensile strain between the building layers, which indicates that either layer can be utilized as an electron donor or acceptor by varying its deformation conditions. Meanwhile, this compressive (tensile) strain can also induce a red (blue) shift in the optical absorption spectra of MXene/BlueP vdW heterostructures. Finally, our results on the mechanical flexibility and deformation mechanism of MXene/BlueP vdW heterostructures suggest their great long-term stability as well as promising applications in flexible devices. We believe that our findings will open a new way for the modulation and development of vdW heterostructures in flexible optical/electronic devices.


ACS Applied Materials & Interfaces | 2016

Blue Phosphorene/MS2 (M = Nb, Ta) Heterostructures As Promising Flexible Anodes for Lithium-Ion Batteries

Qiong Peng; Zhenyu Wang; Baisheng Sa; Bo Wu; Zhimei Sun

The idea of forming van der Waals (vdW) heterostructures by integrating various two-dimensional materials breaks the limitation of the restricted properties of single material systems. In this work, the electronic structure modulation, stability, entire stress response and the Li adsorption properties of heterostructures by combining blue phosphorene (BlueP) and MS2 (M = Nb, Ta) together were systematically investigated using first-principles calculations based on vdW corrected density functional theory. We revealed that BlueP/MS2 vdW heterostructures possess good structural stability with negative formation energy, enhanced electrical conductivity, improved mechanical flexibility (ultimate strain >17%) and high-capacity (528.257 mAhg(-1) for BlueP/NbS2). The results suggest that BlueP/NbS2 and BlueP/TaS2 heterostructures are ideal candidates used as promising flexible electrode for high recycling rate and portable lithium-ion batteries, which satisfy the requirement of next-generation flexible energy storage and conversion devices.


Scientific Reports | 2016

Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures

Qiong Peng; Zhenyu Wang; Baisheng Sa; Bo Wu; Zhimei Sun

As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices.


Physical Chemistry Chemical Physics | 2010

Ab initio study of the structure and chemical bonding of stable Ge3Sb2Te6

Baisheng Sa; Naihua Miao; Jian Zhou; Zhimei Sun; Rajeev Ahuja

The atomic arrangements and chemical bonding of stable Ge(3)Sb(2)Te(6), a phase-change material, have been investigated by means of ab initio total energy calculations. The results show that an ordered stacking of Ge-Te-Ge-Te-Sb-Te-Te-Sb-Te-Ge-Te- is the most stable configuration in respect that the -Sb-Te-Te-Sb- configuration enhances the structure stability as analyzed by electron localization function (ELF) and bond energies. Ge(3)Sb(2)Te(6) shows the character of a p-type semiconductor as seen from the density of states. The chemical bonding of Ge(3)Sb(2)Te(6) is rather inhomogeneous; strong and weak covalence coexist between Te and Sb atoms, while the strength of the covalent bonding between Te and Ge atoms of various Te-Ge bonds is very close, whereas the interaction between the neighboring Te layers is a van der Waals-type weak bond. The bonding character of Ge(3)Sb(2)Te(6) is assumed to be applied to the other pseudobinary nGeTe.mSb(2)Te(3) phase-change materials.


Nanotechnology | 2015

The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene

Baisheng Sa; Yan-Ling Li; Zhimei Sun; Jingshan Qi; Cuilian Wen; Bo Wu

Artificial monolayer black phosphorus, so-called phosphorene, has attracted global interest with its distinguished anisotropic, optoelectronic, and electronic properties. Here, we unraveled the shear-induced direct-to-indirect gap transition and anisotropy diminution in phosphorene based on first-principles calculations. Lattice dynamic analysis demonstrates that phosphorene can sustain up to 10% applied shear strain. The bandgap of phosphorene experiences a direct-to- indirect transition when 5% shear strain is applied. The electronic origin of the direct-to-indirect gap transition from 1.54 eV at ambient conditions to 1.22 eV at 10% shear strain for phosphorene is explored. In addition, the anisotropy diminution in phosphorene is discussed by calculating the maximum sound velocities, effective mass, and decomposed charge density, which signals the undesired shear-induced direct-to-indirect gap transition in applications of phosphorene for electronics and optoelectronics. On the other hand, the shear-induced electronic anisotropy properties suggest that phosphorene can be applied as the switcher in nanoelectronic applications.


Applied Physics Letters | 2016

Pressure-induced semimetal-semiconductor transition and enhancement of thermoelectric performance in α-MgAgSb

Naihua Miao; Jian Zhou; Baisheng Sa; Bin Xu; Zhimei Sun

Comparable to bismuth telluride, α-MgAgSb-based materials (α-MAS) have been investigated recently as promising candidates for room-temperature thermoelectric energy harvesting and thus various efforts have been devoted to the enhancement of their thermoelectric performance. By utilizing first-principles density functional calculations and Boltzmann transport theory, we report that the thermoelectric properties of α-MAS can be dramatically improved with the application of hydrostatic pressure. This is attributed to a pressure-induced semimetal to semiconductor transition in α-MAS. With the benefit of this pressure-tunable behaviour, the Seebeck coefficient of α-MAS can be manipulated flexibly. Furthermore, we found that, through the combination of applying pressure and p-type doping, the optimal thermoelectric power factor and figure of merit of α-MAS can be enhanced remarkably by 110% at 550 K compared with the intrinsic case. Our results provide an interesting insight and a feasible guideline for the imp...


EPL | 2012

Strain-induced topological insulating behavior in ternary chalcogenide Ge2Sb2Te5

Baisheng Sa; Jian Zhou; Zhijun Sun; Rajeev Ahuja

National Natural Science Foundation of China [60976005]; Outstanding Young Scientists Foundation of Fujian Province of China [2010J06018]; program for New Century Excellent Talents in University [NCET-08-0474]


Nano Research | 2017

Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications

Qiong Peng; Kangming Hu; Baisheng Sa; Jian Zhou; Bo Wu; Xianhua Hou; Zhimei Sun

Recently, flexible electrodes with biaxial/omnidirectional stretchability have attracted significant attention. However, most existing pliable electrode materials can be only stretched in one direction. In this work, an unexpected isotropic van der Waals (vdW) heterostructure is proposed, based on the assembly of two-dimensional crystals of anisotropic black phosphorene (BP) and transition metal carbide (TiC2). Using vdW-corrected density functional theory calculations, the BP/TiC2 vdW heterostructure was predicted to have excellent structural and mechanical stability, superior electrical conductivity, omnidirectional flexibility, and a high Li storage capacity. We have unraveled the physical origin of the excellent stability, as well as the Li adsorption preferences of the lithiated heterostructure, based on a three-step analysis of the stability of the Li-adsorption processes. In addition, the BP/TiC2 vdW heterostructure can also be applied as the anode material for flexible Na-ion batteries because of its high Na storage capacity and strong Na binding. However, compared with Na adsorption, the capacity is higher, and the adsorption energy is more negative for Li adsorption. Our findings provide valuable insights into the exploration of a rich variety of vdW heterostructures for next-generation flexible energy storage devices.

Collaboration


Dive into the Baisheng Sa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhitang Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge