Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baiyao Xu is active.

Publication


Featured researches published by Baiyao Xu.


Journal of Cellular Physiology | 2012

RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells.

Baiyao Xu; Guanbin Song; Yang Ju; Xian Li; Yuanhui Song; Sachi Watanabe

Human bone marrow mesenchymal stem cells (hMSCs) have the potential to differentiate into tendon/ligament‐like lineages when they are subjected to mechanical stretching. However, the means through which mechanical stretch regulates the tenogenic differentiation of hMSCs remains unclear. This study examined the role of RhoA/ROCK, cytoskeletal organization, and focal adhesion kinase (FAK) in mechanical stretch‐induced tenogenic differentiation characterized by the up‐regulation of tendon‐related marker gene expression. Our findings showed that RhoA/ROCK and FAK regulated mechanical stretch‐induced realignment of hMSCs by regulating cytoskeletal organization and that RhoA/ROCK and cytoskeletal organization were essential to mechanical stretch‐activated FAK phosphorylation at Tyr397. We also demonstrated that this process can be blocked by Y‐27632 (a specific inhibitor of RhoA/ROCK), cytochalasin D (an inhibitor of cytoskeletal organization) or PF 573228 (a specific inhibitor of FAK). The results of this study suggest that RhoA/ROCK, cytoskeletal organization, and FAK compose a “signaling network” that senses mechanical stretching and drives mechanical stretch‐induced tenogenic differentiation of hMSCs. This work provides novel insights regarding the mechanisms of tenogenesis in a stretch‐induced environment and supports the therapeutic potential of hMSCs. J. Cell. Physiol. 227: 2722–2729, 2012.


Langmuir | 2014

TLyP-1-conjugated Au-nanorod@SiO2 core-shell nanoparticles for tumor-targeted drug delivery and photothermal therapy

Baiyao Xu; Yang Ju; Yanbin Cui; Guanbin Song; Yuichi Iwase; Atsushi Hosoi; Yasuyuki Morita

Mesoporous silica-coated Au nanorod (AuNR@SiO2) is one of the most important appealing nanomaterials for cancer therapy. The multifunctions of chemotherapy, photothermal therapy, and imaging of AuNR@SiO2 make it very useful for cancer therapy. In this study, AuNR@SiO2 was functionalized to deliver hydrophobic antitumor drug and to heat the targeted tumor with the energy of near-infrared (NIR). To carry out the function of targeting the tumor, tLyP-1, a kind of tumor homing and penetrating peptide, was engrafted to AuNR@SiO2. The fabricated AuNR@SiO2-tLyP-1 which was loaded with camptothecin (CPT) showed a robust, selective targeting and penetrating efficiency to Hela and MCF-7 cells and induced the death of these cells. When the micromasses of these AuNR@SiO2-tLyP-1 internalized cells were irradiated by NIR illumination, all the cells were killed instantaneously owing to the increased temperature caused by the surface plasma resonance (SPR) of the internalized AuNR@SiO2-tLyP-1. Moreover, the systematic toxicity of CPT-loaded AuNR@SiO2-tLyP-1 on human mesenchymal stem cells (hMSCs) was minimized, because the AuNR@SiO2-tLyP-1 selectively targeted and penetrated into the tumor cells, and little hydrophobic CPT was released into the culture medium or blood. This study indicates that the AuNR@SiO2-tLyP-1 drug delivery system (DDS) has great potential application for the chemo-photothermal cancer therapy.


Connective Tissue Research | 2011

Effect of Focal Adhesion Kinase on the Regulation of Realignment and Tenogenic Differentiation of Human Mesenchymal Stem Cells by Mechanical Stretch

Baiyao Xu; Guanbin Song; Yang Ju

Focal adhesion kinase (FAK) is a focal adhesion-associated protein kinase involved in cell adhesion and spreading. It is recruited as a participant in focal adhesion dynamics between cells and has a role in cell motility, differentiation, and survival. The role of FAK in the differentiation of human mesenchymal stem cells (hMSCs), however, is not well understood, particularly in terms of tenogenic differentiation. In this study, we reported that FAK regulates the mechanical stretch-induced realignment of hMSCs. We showed that FAK can be activated by mechanical stretch and, with a 10 μM PF 573228 (a novel small molecule inhibitor of FAK) treatment, FAK autophosphorylation at Tyr397 is significantly decreased. Moreover, our findings demonstrated that this decrease in FAK autophosphorylation at Tyr397 leads to the attenuation of upregulation of mechanical stretch-induced mRNA expression of tendon-related genes, including type I collagen, type III collagen, tenascin-C, and scleraxis. These results indicate that the FAK signaling molecule plays an important role in regulating cell realignment and tenogenic differentiation of hMSCs when induced by mechanical stretch. Collectively, our findings provide novel insight into the role of FAK in the realignment and mechanotransduction of hMSCs during the process of tenogenic differentiation induced by mechanical stretch.


Journal of Bioscience and Bioengineering | 2014

Role of p38, ERK1/2, focal adhesion kinase, RhoA/ROCK and cytoskeleton in the adipogenesis of human mesenchymal stem cells.

Baiyao Xu; Yang Ju; Guanbin Song

Adipogenesis is important to health and is thought occurring in the two stages of mesenchymal stem cell commitment to a preadipocyte fate and terminal differentiation of the preadipocyte. However, the mechanism of adipogenesis is still not clear. In this study, the roles of p38, extracellular regulated protein kinases 1/2 (ERK1/2), focal adhesion kinase (FAK), RhoA/ROCK, and cytoskeleton in both of the two stages of adipogenesis were assayed. Our results showed that the treatments of SB203580 (the inhibitor of p38) and U0126 (the inhibitor of ERK1/2) suppressed the adipogenesis induced by differentiation medium, and the treatments of PF573228 (a specific inhibitor of FAK), Y27632 (a specific inhibitor of RhoA/ROCK) and cytochalasin D (an inhibitor of cytoskeletal organization) promoted the adipogenesis. The treatments of SB203580 and U0126 significantly inhibited the adipogenic differentiation of hMSCs cultured in differentiation medium in the presence of PF573228, Y27632 or cytochalasin D. Moreover, the treatments of PF573228, Y27632 and cytochalasin D promoted p38 and ERK1/2 phosphorylations, and the treatments of U0126 and SB203580 decreased p38 and ERK1/2 phosphorylations, respectively. These results demonstrated that p38 and ERK1/2 played crucial positive roles in adipogenesis, and FAK, RhoA/ROCK and cytoskeleton played negative roles. Furthermore, FAK, RhoA/ROCK and cytoskeleton affected adipogenesis by regulating the activities of p38 and ERK1/2 which interacted with each other in the process of adipogenesis.


Experimental Cell Research | 2014

A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway.

Bingyu Zhang; Qing Luo; Xinjian Mao; Baiyao Xu; Li Yang; Yang Ju; Guanbin Song

Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Youngs modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Youngs modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway.


Materials Science and Engineering: C | 2014

Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells

Yuanhui Song; Yang Ju; Yasuyuki Morita; Baiyao Xu; Guanbin Song

Many studies have demonstrated the possibility to regulate cellular behavior by manipulating the specific characteristics of biomaterials including the physical features and chemical properties. To investigate the synergistic effect of chemical factors and surface topography on the growth behavior of mesenchymal stem cells (MSCs), bone morphorgenic protein 2 (BMP2) was immobilized onto porous alumina substrates with different pore sizes. The BMP2-immobilized alumina substrates were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Growth behavior and osteogenic differentiation of MSCs cultured on the different substrates were investigated. Cell adhesion and morphological changes were observed with SEM, and the results showed that the BMP2-immobilized alumina substrate was able to promote adhesion and spreading of MSCs. MTT assay and immunofluorescence staining of integrin β1 revealed that the BMP2-immobilized alumina substrates were favorable for cell growth. To evaluate the differentiation of MSCs, osteoblastic differentiation markers, such as alkaline phosphatase (ALP) activity and mineralization, were investigated. Compared with those of untreated alumina substrates, significantly higher ALP activities and mineralization were detected in cells cultured on BMP2-immobilized alumina substrates. The results suggested that surface functionalization of nanoporous alumina substrates with BMP2 was beneficial for cell growth and osteogenic differentiation. With the approach of immobilizing growth factors onto material substrates, it provided a new insight to exploit novel biofunctional materials for tissue engineering.


Stem Cell Research | 2015

Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells.

Bingyu Zhang; Qing Luo; Zhe Chen; Jinghui Sun; Baiyao Xu; Yang Ju; Guanbin Song

Bone marrow stromal cells (BMSCs, also broadly known as bone marrow-derived mesenchymal stem cells) are multipotent stem cells that have a self-renewal capacity and multilineage differentiation potential. Mechanical stretching plays a vital role in regulating the proliferation and differentiation of BMSCs. However, little is known about the effects of cyclic stretching on BMSC migration and invasion. In this study, using a custom-made cell-stretching device, we studied the effects of cyclic mechanical stretching on rat BMSC migration and invasion using a Transwell Boyden Chamber. The protein secretion of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) was detected by gelatin zymography, and the activation of focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2) was measured by western blot. We found that cyclic mechanical stretching with 10% amplitude at 1Hz frequency for 8h promotes BMSC migration, but reduces BMSC invasion. FAK and ERK1/2 signals were activated in BMSCs after exposure to cyclic stretching. In the presence of the FAK phosphorylation blocker PF573228 or the ERK1/2 phosphorylation blocker PD98059, the cyclic-stretch-promoted migration of BMSCs was completely suppressed. On the other hand, cyclic mechanical stretching reduced the secretion of MMP-2 and MMP-9 in BMSCs, and PF573228 suppressed the cyclic-stretch-reduced secretion of MMP-2 and MMP-9. The decrease of BMSC invasion induced by mechanical stretching is partially restored by PF573228 but remained unaffected by PD98059. Taken together, these data show that cyclic mechanical stretching promotes BMSC migration via the FAK-ERK1/2 signalling pathway, but reduces BMSC invasion by decreasing secretion of MMP-2 and MMP-9 via FAK, independent of the ERK1/2 signal.


RSC Advances | 2014

Mimicking a gecko’s foot with strong adhesive strength based on a spinnable vertically aligned carbon nanotube array

Yanbin Cui; Yang Ju; Baiyao Xu; Peng Wang; Naoki Kojima; Kazuma Ichioka; Atsushi Hosoi

To mimic gecko foot adhesion, spinnable vertically aligned carbon nanotube (VACNT) arrays, which have a higher density and cleaner surface than ordinary VACNT arrays, were prepared by a normal chemical vapor deposition (CVD) process that is simple and easy to operate for large-scale fabrication, particularly compared with the low-pressure CVD process. The height of the spinnable VACNT array was tuned by varying the reaction time. The shear adhesion strength of the spinnable VACNT array (0.16 cm2) was increased from 21.4 ± 1.7 to 85.8 ± 8.7 N cm−2 when the length of the spinnable VACNT array increased from 35 to 110 μm. Based on the enhanced van der Waals force induced by the large number of contact points on the high-density spinnable VACNT array, the maximum shear adhesion strength of the spinnable VACNT array (0.16 cm2) is 91.8 N cm−2, which is comparable to that of the CNT-based adhesive (∼100 N cm−2) prepared by the low-pressure CVD process. Moreover, a spinnable VACNT array adhesive was prepared over a large area, and a maximum weight of 3.0 Kg was supported successfully by a spinnable VACNT array adhesive with a contact area of 0.96 cm2.


Materials Science and Engineering: C | 2015

Carbon nanotube array inducing osteogenic differentiation of human mesenchymal stem cells.

Baiyao Xu; Yang Ju; Yanbin Cui; Guanbin Song

Carbon nanotubes (CNTs) are a kind of nanomaterials which have been shown a promising application for biomedicine. There are a lot of studies to use CNTs to induce the differentiation of mesenchymal stem cells (MSCs). However, the cellular behavior of MSCs on the top layer of CNT array was still not well understood. In this study, we evaluated the morphology, the gene expressions of the osteogenic differentiation related markers, and the gene expressions of collagen type II (Col II, a marker of chondrogenesis), PPARγ (a marker of adipogenesis) and scleraxis (SCX, a marker of tenogenesis) in human mesenchymal stem cells (hMSCs) cultured on multi-walled carbon nanotube (MWCNT) array. The effect of MWCNT array on the mineralization of hMSCs which were cultured in osteogenic differentiation medium (ODM) was further assayed. Our results showed that the hMSCs cultured on MWCNT array spread well, formed numerous spiral shaped cell colons and showed perinuclear morphology. Compared to hMSCs cultured on dish, the gene expression of osteocalcin (OCN) was increased while the gene expressions of collagen type II (Col II), PPARγ and scleraxis (SCX) were decreased in hMSCs which were cultured on MWCNT array without any differentiation factors. Furthermore, compared with hMSCs on dish, the gene expressions of collagen type I (Col I), osteocalcin (OCN), osteopontin (OPN) and RUNX2, and the mineralization of hMSCs on MWCNT array were enhanced when they were cultured in osteogenic differentiation medium (ODM). Our results indicated that MWCNT array was able to promote the osteogenesis of hMSCs.


Wound Repair and Regeneration | 2015

MGF enhances tenocyte invasion through MMP‐2 activity via the FAK‐ERK1/2 pathway

Bingyu Zhang; Qing Luo; Jinghui Sun; Baiyao Xu; Yang Ju; Li Yang; Guanbin Song

Tendon regeneration and healing requires tenocytes to move to the repair site followed by proliferation and synthesis of the extracellular matrix. A novel synthetic growth factor, mechano‐growth factor (MGF), has been discovered to have positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury‐induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. In this study, using a transwell system, we found that MGF‐C25E (a synthetic mechano‐growth factor E peptide) significantly promotes tenocyte invasion, which was accompanied by the increased phosphorylation of focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2) as well as the increased activity of matrix metalloproteinases‐2 (MMP‐2). The MMP‐2 inhibitor OA‐Hy blocked MGF‐C25E‐promoted tenocyte invasion. Inhibitors of FAK or ERK1/2 blocked MGF‐C25E‐promoted tenocyte invasion and MMP‐2 activity as well. These results indicate that MGF‐C25E promotes tenocyte invasion by increasing MMP‐2 activity via the FAK‐ERK1/2 signaling pathway. Taken together, our findings provide the first evidence that MGF‐C25E enhances tenocyte invasion and indicate that it may serve as a potential repair material for promoting the healing and regeneration of injured tendons.

Collaboration


Dive into the Baiyao Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Luo

Chongqing University

View shared research outputs
Top Co-Authors

Avatar

Yanbin Cui

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge