Bakhtiar Muhammad
Hazara University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bakhtiar Muhammad.
Polymer-plastics Technology and Engineering | 2016
Irum Rafique; Bakhtiar Muhammad
ABSTRACT In this review, an overview of polymer and carbon nanotube composite is presented with special emphasis on their applications in technical fields. The general applications of polymer/carbon nanotube nanocomposite in actuators, sensors, sporting goods, and so on have been discussed. In addition, special features of epoxy and epoxy/carbon nanotube composites were discussed in detail. Enhancement in the characteristic features of epoxy matrix with the incorporation of carbon nanotube has been observed. Consequently, the main focus of the review is on applications of epoxy/carbon nanotube composites in different fields such as aerospace, automobiles, fuel cells, radar-absorbing material, wind turbine blades, and electromagnetic interface shielding. GRAPHICAL ABSTRACT
Polymer-plastics Technology and Engineering | 2015
Rahim Shah; Bakhtiar Muhammad; Sayed Shah
In this article, various types of carbon nanofiller and modification of graphene oxide and graphene for the preparation of polymer-based nanocomposites are reviewed. Recently, polymer/graphene and graphene oxide-based materials have attracted tremendous interest due to high performance even at low filler content. The property enhancement is due to the high aspect ratio, high surface area and excellent electrical, thermal and mechanical properties of nanofiller. Different techniques have been employed to fabricate polymer/graphene and graphene oxide nanocomposite with uniform dispersion due to fine matrix/nanofiller interaction. Here we discuss the structure, properties and preparation of these nanocomposites. GRAPHICAL ABSTRACT
Polymer-plastics Technology and Engineering | 2016
Irum Rafique; Zanib Anwar; Bakhtiar Muhammad
ABSTRACT Epoxy resins, is an important class of reactive polymers, have been reported to be toughened by nanoparticles. Carbon nanotube is a tubular cylinder ofcarbonatoms having extraordinary mechanical, electrical, and thermal properties. In this article, present state of epoxy/carbon nanotube composite is given. Types of epoxy and hardening agents commonly used in composite processing have been thrashed out. Frequently used fabrication techniques are discussed with particular emphasis on evaluating dispersion state of nanotube. Epoxy/carbon nanotube composites offer substantially improved properties compared to traditional fiber-reinforced epoxy composites. Finally, potential relevance for efficiently transforming filler properties to matrix facilitating aerospace relevance is conversed. GRAPHICAL ABSTRACT
Polymer-plastics Technology and Engineering | 2015
Saira Jabeen; Bakhtiar Muhammad; Sagheer Gul; Muhammad Farooq
In this review, an overview of various types of nanofillers is presented with special emphasis on structure, synthesis and properties of carbon nanotube, nanodiamond, and nanobifiller of carbon nanotube/nanodiamond, carbon nanotube/graphene oxide and carbon nanotube/graphene. In addition, polymer/carbon nanotube, polymer/nanodiamond, and polymer/nanobifiller composites have been discussed. The efficacy of different fabrication techniques for nanocomposites (solution casting, in-situ, and melt blending method) and their properties were also discussed in detail. Finally, we have summarized the challenges and future prospects of polymer nanocomposites reinforced with carbon nanofillers hoping to facilitate progress in the emerging area of nanobifiller technology. GRAPHICAL ABSTRACT
Beilstein Journal of Nanotechnology | 2015
Syeda Arooj; Samina Nazir; Akhtar Nadhman; Nafees Ahmad; Bakhtiar Muhammad; Ishaq Ahmad; Kehkashan Mazhar; Rashda Abbasi
Summary The use of photoactive nanoparticles (NPs) such as zinc oxide (ZnO) and its nanocomposites has become a promising anticancer strategy. However, ZnO has a low photocatalytic decomposition rate and the incorporation of metal ions such as silver (Ag) improves their activity. Here different formulations of ZnO:Ag (1, 3, 5, 10, 20 and 30% Ag) were synthesized by a simple co-precipitation method and characterized by powder X-ray diffraction, scanning electron microscopy, Rutherford back scattering and diffuse reflectance spectroscopy for their structure, morphology, composition and optical band gap. The NPs were investigated with regard to their different photocatalytic cytotoxic effects in human malignant melanoma (HT144) and normal (HCEC) cells. The ZnO:Ag nanocomposites killed cancer cells more efficiently than normal cells under daylight exposure. Nanocomposites having higher Ag content (10, 20 and 30%) were more toxic compared to low Ag content (1, 3 and 5%). For HT144, under daylight exposure, the IC50 values were ZnO:Ag (10%): 23.37 μg/mL, ZnO:Ag (20%): 19.95 μg/mL, and ZnO:Ag (30%): 15.78 μg/mL. ZnO:Ag (30%) was toxic to HT144 (IC50: 23.34 μg/mL) in dark as well. The three nanocomposites were further analyzed with regard to their ability to generate reactive oxygen species (ROS) and induce lipid peroxidation. The particles led to an increase in levels of ROS at cytotoxic concentrations, but only HT144 showed strongly induced MDA level. Finally, NPs were investigated for the ROS species they generated in vitro. A highly significant increase of 1O2 in the samples exposed to daylight was observed. Hydroxyl radical species, HO•, were also generated to a lesser extent. Thus, the incorporation of Ag into ZnO NPs significantly improves their photo-oxidation capabilities. ZnO:Ag nanocomposites could provide a new therapeutic option to selectively target cancer cells.
Polymer-plastics Technology and Engineering | 2016
Sagheer Gul; Bakhtiar Muhammad; Saira Jabeen
ABSTRACT This review covers significant properties and applications of nanoclays in polymer-based nanocomposites with special emphasis on future potential. Various strategies have been adopted for nanocomposite synthesis including delamination of nanoclays through melt shearing, in situ polymerization, and sol–gel method. Proper dispersion of nanoclay results in improved properties of bulk polymer (thermal stability, mechanical strength, gas barrier, and flame retardancy). Light weight, low cost, and improved physical properties of polymer/clay materials increase their demand in modern material industries (aerospace, automobile, barrier materials, construction, and biomedical). Due to extensive use of these nanocomposites in technical fields, there are still many stones left unturned. GRAPHICAL ABSTRACT
Polymer-plastics Technology and Engineering | 2016
Zanib Anwar; Irum Rafique; Bakhtiar Muhammad
ABSTRACT In this review, development from graphene nanoplatelet, that is, comprised of short bulk of single layer graphene, into modified-polymer/graphene nanoplatelet composite is presented. Preparation methods of graphite, graphene, and graphene nanoplatelets have also been discussed. Graphene nanoplatelet and modified graphene nanoplatelet commend unique properties to composites such as excellent thermal and electrical conductivity as well as mechanical and barrier properties. Graphene nanoplatelet fabrication techniques by solution mixing, melt blending, and in situ polymerization are also discussed. Excellent dispersion of nanoplatelets in polymer/graphene nanoplatelet depends upon the selection of suitable fabrication technique. Moreover, the corresponding significance, exploitation, challenges, and future aspect of polymer/graphene nanoplatelet-based material is overviewed. GRAPHICAL ABSTRACT
Polymer-plastics Technology and Engineering | 2015
Naveed Ahmed; Bakhtiar Muhammad
Polyurethanes are synthetic smart materials having exquisite property to regain original shape from temporary shape when an external force (heat, light, electricity, and entropy driven deformation) is applied. Shape memory polyurethanes have ability to replace shape memory alloys due to cut-rate, easy manufacturing, programing, and high shape recovery ratio. The review focused on polyurethane types exhibiting shape memory effect and various categories of shape memory effects in polyurethane. Moreover, compound structure, modeling structure, applications, and related synthetic methods for shape memory polyurethanes are discussed. The strategies for induction of cross-linking and post cross-linking at high, medium, and low temperature are surveyed. GRAPHICAL ABSTRACT
Polymer-plastics Technology and Engineering | 2016
Zanib Anwar; Bakhtiar Muhammad
ABSTRACT Development in graphite, graphene, and graphene nanoplatelet composites with epoxy matrix is presented here. Graphite and its modified forms propose exclusive properties to composites. Graphene has developed as subject of huge scientific attention due to excellent electron transport, mechanical properties, and high surface area. When combined appropriately with epoxy, these atomically thin carbon sheets can expressively progress physical properties even at very small loading. Epoxy/graphene nanoplatelet nanocomposite with enhanced properties was also reported. We summarized and compared electrical, thermal, and mechanical properties of epoxy composites derived from these three nanofillers. Potential of carbon fillers with epoxy matrix is also discussed. GRAPHICAL ABSTRACT
Polymer-plastics Technology and Engineering | 2016
Irum Rafique; Bakhtiar Muhammad
ABSTRACT Among carbon fillers, carbon fiber is considered to be an ideal reinforcement for epoxy because of its outstanding electrical, mechanical, and thermal features. Several inorganic fillers such as zinc oxide, titania, and silica are also used in epoxy matrix for property enhancement. The review initially focuses the preparation methods and physical characteristics of epoxy/carbon fiber composite. Afterward, fabrication and properties of epoxy/zinc oxide/titania/silica composites are also conversed. Moreover, the effect of filler dispersion on polymer properties’ improvement is also highlighted. Epoxy/carbon fiber composites are employed more frequently and effectively in defense-related applications compared with epoxy/inorganic nanofiller composite. GRAPHICAL ABSTRACT